The MATERHORN: Unraveling the Intricacies of Mountain Weather

H. J. S. Fernando University of Notre Dame, Notre Dame, Indiana

Search for other papers by H. J. S. Fernando in
Current site
Google Scholar
PubMed
Close
,
E. R. Pardyjak University of Utah, Salt Lake City, Utah

Search for other papers by E. R. Pardyjak in
Current site
Google Scholar
PubMed
Close
,
S. Di Sabatino University of Notre Dame, Notre Dame, Indiana

Search for other papers by S. Di Sabatino in
Current site
Google Scholar
PubMed
Close
,
F. K. Chow University of California, Berkeley, Berkeley, California

Search for other papers by F. K. Chow in
Current site
Google Scholar
PubMed
Close
,
S. F. J. De Wekker University of Virginia, Charlottesville, Virginia

Search for other papers by S. F. J. De Wekker in
Current site
Google Scholar
PubMed
Close
,
S. W. Hoch University of Utah, Salt Lake City, Utah

Search for other papers by S. W. Hoch in
Current site
Google Scholar
PubMed
Close
,
J. Hacker Naval Postgraduate School, Monterey, California, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Hacker in
Current site
Google Scholar
PubMed
Close
,
J. C. Pace U.S. Army Dugway Proving Ground, Utah

Search for other papers by J. C. Pace in
Current site
Google Scholar
PubMed
Close
,
T. Pratt University of Notre Dame, Notre Dame, Indiana

Search for other papers by T. Pratt in
Current site
Google Scholar
PubMed
Close
,
Z. Pu University of Utah, Salt Lake City, Utah

Search for other papers by Z. Pu in
Current site
Google Scholar
PubMed
Close
,
W. J. Steenburgh University of Utah, Salt Lake City, Utah

Search for other papers by W. J. Steenburgh in
Current site
Google Scholar
PubMed
Close
,
C. D. Whiteman University of Utah, Salt Lake City, Utah

Search for other papers by C. D. Whiteman in
Current site
Google Scholar
PubMed
Close
,
Y. Wang U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by Y. Wang in
Current site
Google Scholar
PubMed
Close
,
D. Zajic U.S. Army Dugway Proving Ground, Utah

Search for other papers by D. Zajic in
Current site
Google Scholar
PubMed
Close
,
B. Balsley University of Colorado Boulder, Boulder, Colorado

Search for other papers by B. Balsley in
Current site
Google Scholar
PubMed
Close
,
R. Dimitrova University of Notre Dame, Notre Dame, Indiana

Search for other papers by R. Dimitrova in
Current site
Google Scholar
PubMed
Close
,
G. D. Emmitt Simpson Weather Associates, Charlottesville, Virginia

Search for other papers by G. D. Emmitt in
Current site
Google Scholar
PubMed
Close
,
C. W. Higgins Oregon State University, Corvallis, Oregon

Search for other papers by C. W. Higgins in
Current site
Google Scholar
PubMed
Close
,
J. C. R. Hunt University of Notre Dame, Notre Dame, Indiana

Search for other papers by J. C. R. Hunt in
Current site
Google Scholar
PubMed
Close
,
J. C. Knievel National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. C. Knievel in
Current site
Google Scholar
PubMed
Close
,
D. Lawrence University of Colorado Boulder, Boulder, Colorado

Search for other papers by D. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Y. Liu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Y. Liu in
Current site
Google Scholar
PubMed
Close
,
D. F. Nadeau École Polytechnique de Montréal, Montreal, Quebec, Canada

Search for other papers by D. F. Nadeau in
Current site
Google Scholar
PubMed
Close
,
E. Kit University of Notre Dame, Notre Dame, Indiana, and Tel Aviv University, Tel Aviv, Israel

Search for other papers by E. Kit in
Current site
Google Scholar
PubMed
Close
,
B. W. Blomquist University of Notre Dame, Notre Dame, Indiana, and National Oceanic and Atmospheric Administration, Silver Spring, Maryland, and University of Colorado Boulder, Boulder, Colorado

Search for other papers by B. W. Blomquist in
Current site
Google Scholar
PubMed
Close
,
P. Conry University of Notre Dame, Notre Dame, Indiana

Search for other papers by P. Conry in
Current site
Google Scholar
PubMed
Close
,
R. S. Coppersmith University of Notre Dame, Notre Dame, Indiana

Search for other papers by R. S. Coppersmith in
Current site
Google Scholar
PubMed
Close
,
E. Creegan U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by E. Creegan in
Current site
Google Scholar
PubMed
Close
,
M. Felton U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by M. Felton in
Current site
Google Scholar
PubMed
Close
,
A. Grachev University of Notre Dame, Notre Dame, Indiana, and National Oceanic and Atmospheric Administration, Silver Spring, Maryland, and University of Colorado Boulder, Boulder, Colorado

Search for other papers by A. Grachev in
Current site
Google Scholar
PubMed
Close
,
N. Gunawardena University of Utah, Salt Lake City, Utah

Search for other papers by N. Gunawardena in
Current site
Google Scholar
PubMed
Close
,
C. Hang University of Utah, Salt Lake City, Utah

Search for other papers by C. Hang in
Current site
Google Scholar
PubMed
Close
,
C. M. Hocut University of Notre Dame, Notre Dame, Indiana

Search for other papers by C. M. Hocut in
Current site
Google Scholar
PubMed
Close
,
G. Huynh U.S. Army Research Laboratory, Adelphi, Maryland

Search for other papers by G. Huynh in
Current site
Google Scholar
PubMed
Close
,
M. E. Jeglum University of Utah, Salt Lake City, Utah

Search for other papers by M. E. Jeglum in
Current site
Google Scholar
PubMed
Close
,
D. Jensen University of Utah, Salt Lake City, Utah

Search for other papers by D. Jensen in
Current site
Google Scholar
PubMed
Close
,
V. Kulandaivelu University of Utah, Salt Lake City, Utah

Search for other papers by V. Kulandaivelu in
Current site
Google Scholar
PubMed
Close
,
M. Lehner University of Utah, Salt Lake City, Utah

Search for other papers by M. Lehner in
Current site
Google Scholar
PubMed
Close
,
L. S. Leo University of Notre Dame, Notre Dame, Indiana

Search for other papers by L. S. Leo in
Current site
Google Scholar
PubMed
Close
,
D. Liberzon University of Notre Dame, Notre Dame, Indiana

Search for other papers by D. Liberzon in
Current site
Google Scholar
PubMed
Close
,
J. D. Massey University of Utah, Salt Lake City, Utah

Search for other papers by J. D. Massey in
Current site
Google Scholar
PubMed
Close
,
K. McEnerney University of Notre Dame, Notre Dame, Indiana

Search for other papers by K. McEnerney in
Current site
Google Scholar
PubMed
Close
,
S. Pal University of Virginia, Charlottesville, Virginia

Search for other papers by S. Pal in
Current site
Google Scholar
PubMed
Close
,
T. Price University of Utah, Salt Lake City, Utah

Search for other papers by T. Price in
Current site
Google Scholar
PubMed
Close
,
M. Sghiatti University of Virginia, Charlottesville, Virginia

Search for other papers by M. Sghiatti in
Current site
Google Scholar
PubMed
Close
,
Z. Silver University of Notre Dame, Notre Dame, Indiana

Search for other papers by Z. Silver in
Current site
Google Scholar
PubMed
Close
,
M. Thompson University of Notre Dame, Notre Dame, Indiana

Search for other papers by M. Thompson in
Current site
Google Scholar
PubMed
Close
,
H. Zhang University of Utah, Salt Lake City, Utah

Search for other papers by H. Zhang in
Current site
Google Scholar
PubMed
Close
, and
T. Zsedrovits University of Notre Dame, Notre Dame, Indiana

Search for other papers by T. Zsedrovits in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Emerging application areas such as air pollution in megacities, wind energy, urban security, and operation of unmanned aerial vehicles have intensified scientific and societal interest in mountain meteorology. To address scientific needs and help improve the prediction of mountain weather, the U.S. Department of Defense has funded a research effort—the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program—that draws the expertise of a multidisciplinary, multi-institutional, and multinational group of researchers. The program has four principal thrusts, encompassing modeling, experimental, technology, and parameterization components, directed at diagnosing model deficiencies and critical knowledge gaps, conducting experimental studies, and developing tools for model improvements. The access to the Granite Mountain Atmospheric Sciences Testbed of the U.S. Army Dugway Proving Ground, as well as to a suite of conventional and novel high-end airborne and surface measurement platforms, has provided an unprecedented opportunity to investigate phenomena of time scales from a few seconds to a few days, covering spatial extents of tens of kilometers down to millimeters. This article provides an overview of the MATERHORN and a glimpse at its initial findings. Orographic forcing creates a multitude of time-dependent submesoscale phenomena that contribute to the variability of mountain weather at mesoscale. The nexus of predictions by mesoscale model ensembles and observations are described, identifying opportunities for further improvements in mountain weather forecasting.

In memoriam.

CORRESPONDING AUTHOR: Harindra Joseph Fernando, Environmental Fluid Dynamics Laboratories, Department of Civil and Environmental Engineering and Earth Sciences and Department of Aerospace and Mechanical Engineering, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556-5637, E-mail: hfernand@nd.edu

A supplement to this article is available online (10.1175/BAMS-D-13-00131.2)

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Abstract

Emerging application areas such as air pollution in megacities, wind energy, urban security, and operation of unmanned aerial vehicles have intensified scientific and societal interest in mountain meteorology. To address scientific needs and help improve the prediction of mountain weather, the U.S. Department of Defense has funded a research effort—the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program—that draws the expertise of a multidisciplinary, multi-institutional, and multinational group of researchers. The program has four principal thrusts, encompassing modeling, experimental, technology, and parameterization components, directed at diagnosing model deficiencies and critical knowledge gaps, conducting experimental studies, and developing tools for model improvements. The access to the Granite Mountain Atmospheric Sciences Testbed of the U.S. Army Dugway Proving Ground, as well as to a suite of conventional and novel high-end airborne and surface measurement platforms, has provided an unprecedented opportunity to investigate phenomena of time scales from a few seconds to a few days, covering spatial extents of tens of kilometers down to millimeters. This article provides an overview of the MATERHORN and a glimpse at its initial findings. Orographic forcing creates a multitude of time-dependent submesoscale phenomena that contribute to the variability of mountain weather at mesoscale. The nexus of predictions by mesoscale model ensembles and observations are described, identifying opportunities for further improvements in mountain weather forecasting.

In memoriam.

CORRESPONDING AUTHOR: Harindra Joseph Fernando, Environmental Fluid Dynamics Laboratories, Department of Civil and Environmental Engineering and Earth Sciences and Department of Aerospace and Mechanical Engineering, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556-5637, E-mail: hfernand@nd.edu

A supplement to this article is available online (10.1175/BAMS-D-13-00131.2)

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Supplementary Materials

    • Supplemental Materials (PDF 971.43 KB)
Save
  • Adrian, R. J., K. T. Christensen, and Z.-C. Liu, 2000: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids, 29, 275290, doi:10.1007/s003489900087.

    • Search Google Scholar
    • Export Citation
  • Albini, F. A., D. J. Latham, and R. G. Baughman, 1982: Estimating upslope convective wind speeds for predicting wildland fire behavior. USDA Forest Service Intermountain Forest and Range Experiment Station Research Paper INT-257, 19 pp.

  • Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521536, doi:10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1979: Observations of stratified flow past three-dimensional barriers. J. Geophys. Res., 84, 78347838, doi:10.1029/JC084iC12p07834.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1998: Topographic Effects in Stratified Flows. Cambridge University Press, 482 pp.

  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356, doi:10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2008: Mountain Weather and Climate. 3rd ed. Cambridge University Press, 512 pp.

  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, doi:10.1146/annurev.fluid.30.1.507.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, and Coauthors, 1934: For mountain observatories. Bull. Amer. Meteor. Soc., 15, 993994.

  • Blay-Carreras, E., E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon, 2014: Countergradient heat flux observations during the evening transition period. Atmos. Chem. Phys., 14, 90779085, doi:10.5194/acp-14-9077-2014.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., Ed., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp.

  • Boettinger, J. L., 2009: Soils of Utah. Rangeland resources of Utah, Utah State University Extension Cooperative Extension Doc., 46–48. [Available online at https://extension.usu.edu/utahrangelands/files/uploads/RRU_Final.pdf.]

  • Brighton, P. W. M., 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104, 289307, doi:10.1002/qj.49710444005.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and J. C. Kaimal, 1977: Vertical heat flux in the convective boundary layer. Quart. J. Roy. Meteor. Soc., 103, 811815, doi:10.1002/qj.49710343821.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20, 812821, doi:10.1175/WAF885.1.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. J. De Wekker, and B. Snyder, Eds., 2013. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp., doi:10.1007/978-94-007-4098-3.

  • Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003: Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor., 42, 752768, doi:10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, J. S., and H. J. S. Fernando, 1998: Some aspects of the decay of convective turbulence. Fluid Dyn. Res., 23, 161176, doi:10.1016/S0169-5983(97)00051-8.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., K. Godwin, G. D. Emmitt, and S. Greco, 2012: Airborne Doppler lidar of valley flows in complex coastal terrain. J. Appl. Meteor. Climatol., 51, 15581574, doi:10.1175/JAMC-D-10-05034.1.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eaton, F. D., S. A. McLaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30, 7578, doi:10.1029/94RS01937.

    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., M. L. Hilderbrandt, W. Thomas, and H. J. S. Fernando, 2000: A case study of the climatic mechanisms contributing to the transport of lower atmospheric ozone across metropolitan Phoenix area. J. Climate Res., 15, 1331, doi:10.3354/cr015013.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 2010: Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech., 42, 365389, doi:10.1146/annurev-fluid-121108-145459.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and E. R. Pardyjak, 2013: Field studies delve into the intricacies of mountain weather. Eos, Trans. Amer. Geophys. Union, 94, 313315, doi:10.1002/2013EO360001.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., B. Verhoef, S. Di Sabatino, L. S. Leo, and S. Park, 2013: The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Bound.-Layer Meteor., 147, 443468, doi:10.1007/s10546-012-9795-5.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, doi:10.1007/s10546-006-9048-6.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The Terrain-Induced Rotor Experiment: An overview of the field campaign and some highlights of special observations. Bull. Amer. Meteor. Soc., 89, 15131533, doi:10.1175/2008BAMS2487.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and L. Lei, 2015: Multivariate ensemble sensitivity with localization. Mon. Wea. Rev., 143, 20132027, doi:10.1175/MWR-D-14-00309.1.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and R. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 10951104, doi:10.1175/1520-0450(2001)040<1095:EOMMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, K. A., W. J. Steenburgh, and D. J. Onton, 2005: Model forecast improvements with decreased horizontal grid spacing over finescale intermountain orography during the 2002 Olympic Winter Games. Wea. Forecasting, 20, 558576, doi:10.1175/WAF865.1.

    • Search Google Scholar
    • Export Citation
  • Hocut, C. M., 2013: Multi-scale flow and turbulence in complex terrain under weak synoptic conditions. Ph.D. dissertation, University of Notre Dame, 163 pp.

  • Hocut, C. M., D. Liberzon, and H. J. S. Fernando, 2015: Separation of upslope flow over a uniform slope. J. Fluid Mech., 775, 266287, doi:10.1017/jfm.2015.298.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., H. J. S. Fernando, and M. Princevac, 2003: Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci., 60, 21692182, doi:10.1175/1520-0469(2003)060<2169:UTDFOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., A. Orr, J. W. Rottman, and R. Capon, 2004: Coriolis effects in mesoscale flows with sharp changes in surface conditions. Quart. J. Roy. Meteor. Soc., 130, 27032731, doi:10.1256/qj.04.14.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., G. G. Vilenski, and E. R. Johnson, 2006: Stratified separated flow around a mountain with an inversion layer below the mountain top. J. Fluid Mech., 556, 105119, doi:10.1017/S0022112006009335.

    • Search Google Scholar
    • Export Citation
  • Jannuzzi, J. A., 1993: The onshore push of marine air into the Pacific Northwest. Wea. Forecasting, 8, 194203, doi:10.1175/1520-0434(1993)008<0194:TOPOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeglum, M. E., W. J. Steenburgh, T. P. Lee, and L. F. Bosart, 2010: Multi-reanalysis climatology of intermountain cyclones. Mon. Wea. Rev., 138, 40354053, doi:10.1175/2010MWR3432.1.

    • Search Google Scholar
    • Export Citation
  • Johansen, O., 1975: Thermal conductivity of soils. Ph.D. thesis, University of Trondheim, 671 pp. [Available from Universitetsbiblioteket i Trondheim, Høgskoleringen 1, 7034 Trondheim, Norway.]

  • Katurji, M., P. Zawar-Reza, and S. Zhong, 2013: Surface layer response to topographic solar shading in Antarctica’s dry valleys. J. Geophys. Res. Atmos., 118, 12 33212 344, doi:10.1002/2013JD020530.

    • Search Google Scholar
    • Export Citation
  • Kilpelainen, T., and Coauthors, 2012: Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Quart. J. Roy. Meteor. Soc., 138, 18671883, doi:10.1002/qj.1914.

    • Search Google Scholar
    • Export Citation
  • Kit, E., A. Cherkassy, T. Sant, and H. J. S. Fernando, 2010: In situ calibration of hot-film probes using a colocated sonic anemometer: Implementation of a neural network. J. Atmos. Oceanic Technol., 27, 2341, doi:10.1175/2009JTECHA1320.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., C. D. Whiteman, S. W. Hoch, D. Jensen, E. R. Pardyjak, L. S. Leo, S. Di Sabatino, and H. J. S. Fernando, 2015: A case study of the nocturnal boundary-layer evolution on a slope at the foot of a desert mountain. J. Appl. Meteor. Climatol., 54, 732751, doi:10.1175/JAMC-D-14-0223.1.

    • Search Google Scholar
    • Export Citation
  • Leo, L. S., H. J. S. Fernando, and S. Di Sabatino, 2015a: Flow in complex terrain with coastal and urban influence. J. Environ. Fluid Mech., 15, 349372, doi:10.1007/s10652-013-9327-y.

    • Search Google Scholar
    • Export Citation
  • Lin, Q., W. R. Lindberg, D. L. Boyer, and H. J. S. Fernando, 1992: Stratified flow past a sphere. J. Fluid Mech., 240, 315354, doi:10.1017/S0022112092000119.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 10771092, doi:10.1175/2007JAMC1653.1.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1953: Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus, 5, 4258, doi:10.1111/j.2153-3490.1953.tb01035.x.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1972: Finite amplitude disturbances in the flow of inviscid rotating and stratified fluids over obstacles. Annu. Rev. Fluid Mech., 4, 6992, doi:10.1146/annurev.fl.04.010172.000441.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys. Discuss., 14, 10 78910 852, doi:10.5194/acpd-14-10789-2014.

    • Search Google Scholar
    • Export Citation
  • Louis, H., 1975: Neugefasstes hohendiagramme der Erde. Math-Naturwisse Klasse, B. Messerli В. and J. D. Ives, Eds., Bayerische Akademie der Wissenschaften, 305–326.

  • Lu, R., and R. P. Turco, 1994: Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci., 51, 22852308, doi:10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather and Research Forecasting model. Mon. Wea. Rev., 138, 796817, doi:10.1175/2009MWR2990.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of complex terrain in the WRF model. Mon. Wea. Rev., 140, 39363955, doi:10.1175/MWR-D-11-00311.1.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Marshall, C. H., K. C. Crawford, K. E. Mitchell, and D. J. Stensrud, 2003: The impact of the land surface physics in the operational NCEP Eta Model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecasting, 18, 748768, doi:10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Massey, J. D., W. J. Steenburgh, S. W. Hoch, and J. C. Knievel, 2014: Sensitivity of near-surface temperature forecasts to soil properties over a sparsely vegetated dryland region. J. Appl. Meteor. Climatol., 53, 19761995, doi:10.1175/JAMC-D-13-0362.1.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and Coauthors, 2007: Gap flows: Results from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 881896, doi:10.1002/qj.66.

    • Search Google Scholar
    • Export Citation
  • McCumber, M. C., and R. A. Pielke, 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. J. Geophys. Res., 86, 99299938, doi:10.1029/JC086iC10p09929.

    • Search Google Scholar
    • Export Citation
  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534, doi:10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. J. S. Fernando, and M. B. Parlange, 2011: A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound.-Layer Meteor., 141, 301324, doi:10.1007/s10546-011-9645-x.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. Huwald, and M. B. Parlange, 2013: Flow during the evening transition over steep Alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607624, doi:10.1002/qj.1985.

    • Search Google Scholar
    • Export Citation
  • Ngan, F., H. Kim, P. Lee, B. Dornblaser, and K. Al-Wali, 2013: A study on nocturnal surface wind speed overprediction by the WRF-ARW model in southeastern Texas. J. Appl. Meteor. Climatol., 52, 26382653, doi:10.1175/JAMC-D-13-060.1.

    • Search Google Scholar
    • Export Citation
  • Pardyjak, E., H. J. S. Fernando, J. C. R. Hunt, A. Grachev, and J. Anderson, 2009: Development of nocturnal flow and transport in a wide open valley. Meteor. Z., 18, 85100, doi:10.1127/0941-2948/2009/362.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., R. K. Goodrich, C. S. Morse, A. Yates, R. Barron, and S. A. Cohn, 2011: The Juneau terrain-induced turbulence alert system. Bull. Amer. Meteor. Soc., 92, 299313, doi:10.1175/2010BAMS3024.1.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., J. E. Bossert, T. B. McKee, and R. A. Pielke, 2000: The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci., 57, 19191936, doi:10.1175/1520-0469(2000)057<1919:TIOKFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1942: Strömungslehre (Flow Studies). Vieweg und Sohn, 382 pp.

  • Pratt, T., Z. Lin, S. DiSabatino, L. Leo, N. Dodson, and J. Mueller, 2014: Towards estimation of soil moisture using RF polarimetric responses with topographical data and electromagnetic scattering models. 18th Joint Conf. on the Applications of Air Pollution Meteorology with the A&WMA, Atlanta, GA, Amer. Meteor. Soc., 16.1. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper235742.html.]

  • Price, J. D., and Coauthors, 2011: COLPEX: Field and numerical studies over a region of small hills. Bull. Amer. Meteor. Soc., 92, 16361650, doi:10.1175/2011BAMS3032.1.

    • Search Google Scholar
    • Export Citation
  • Princevac, M., and H. J. S. Fernando, 2008: Morning break-up of cold pools in complex terrain. J. Fluid Mech., 616, 99109, doi:10.1017/S0022112008004199.

    • Search Google Scholar
    • Export Citation
  • Princevac, M., J. C. R. Hunt, and H. J. S. Fernando, 2008: Quasi-steady katabatic winds over long slopes in wide valleys. J. Atmos. Sci., 65, 627643, doi:10.1175/2007JAS2110.1.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., H. Zhang, and J. A. Anderson, 2013: Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus, 65A, 19620, doi:10.3402/tellusa.v65i0.19620.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., and Coauthors, 2014: Evaluation of the real-time WRF forecasts during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program: Performance, comparison with observations, and further implications. 18th Joint Conf. on the Applications of Air Pollution Meteorology with the A&WMA, Atlanta, GA, Amer. Meteor. Soc., 16.2. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper240171.html.]

  • Queney, P., 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626.

  • Rife, D. L., T. T. Warner, F. Chen, and E. G. Astling, 2002: Mechanisms for diurnal boundary layer circulations in the great basin desert. Mon. Wea. Rev., 130, 921938, doi:10.1175/1520-0493(2002)130<0921:MFDBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary‐layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Högström, J. C. R. Hunt, and E. Sahlée, 2007: Heat/mass transfer in the slightly unstable atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 133, 3751, doi:10.1002/qj.7.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. H., and Coauthors, 1985: The structure of strongly stratified flow over hills: Dividing-streamline concept. J. Fluid Mech., 152, 249288, doi:10.1017/S0022112085000684.

    • Search Google Scholar
    • Export Citation
  • Soil Survey Staff, 2014: Web soil survey. Natural Resources Conservation Service, United States Department of Agriculture, accessed 28 May 2014. [Available online at http://websoilsurvey.nrcs.usda.gov/.]

  • Steenburgh, W. J., C. R. Neuman, G. L. West, and L. F. Bosart, 2009: Discrete frontal propagation over the Sierra-Cascade Mountains and Intermountain West. Mon. Wea. Rev., 137, 20002020, doi:10.1175/2008MWR2811.1.

    • Search Google Scholar
    • Export Citation
  • Strobach, K., 1991: Unser Planet Erde: Ursprung und Dynamik. Gebruder Bornträger, 253 pp.

  • Taylor, P. A., P. J. Mason, and E. F. Bradley, 1987: Boundary-layer flow over low hills. Bound.-Layer Meteor., 39 (1–2), 107132, doi:10.1007/BF00121870.

    • Search Google Scholar
    • Export Citation
  • Thomas, C. K., A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, and M. J. Zeeman, 2012: High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface layer flow. Bound.-Layer Meteor., 142, 177192, doi:10.1007/s10546-011-9672-7.

    • Search Google Scholar
    • Export Citation
  • West, G. L., and W. J. Steenburgh, 2010: Life cycle and mesoscale frontal structure of an intermountain cyclone. Mon. Wea. Rev., 138, 25282545, doi:10.1175/2010MWR3274.1.

    • Search Google Scholar
    • Export Citation
  • West, G. L., and W. J. Steenburgh, 2011: Influences of the Sierra Nevada on intermountain cold-front evolution. Mon. Wea. Rev., 139, 31843207, doi:10.1175/MWR-D-10-05076.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor., 21, 270289, doi:10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006: Meteorological experiment in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 16651680, doi:10.1175/2008BAMS2574.1.

    • Search Google Scholar
    • Export Citation
  • Wile, S. M., J. P. Hacker, and K. H. Chilcoat, 2015: The potential utility of high-resolution ensemble sensitivities during weak flow in complex terrain. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Winters, H. A., G. A. Galloway Jr., W. J. Reynolds, and D. W. Rhyne, 2001: Battling the Elements: Weather and Terrain in the Conduct of War. The Johns Hopkins University Press, 226 pp.

  • Wood, N., 2000: Wind flow over complex terrain: A historical perspective and prospect for large-eddy modeling. Bound.-Layer Meteor., 96, 1132, doi:10.1023/A:1002017732694.

    • Search Google Scholar
    • Export Citation
  • WRCC, 2014: Western historical climate summaries. Western Regional Climate Center, accessed 15 Sep 2015. [Available online at www.wrcc.dri.edu/Climsum.html.]

  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 35–119.

  • Zhang, H., and Z. Pu, 2014: Predictability of atmospheric conditions over complex terrain with ensemble Kalman filter data assimilation: Evaluation with observations from MATERHORN field program. 18th Joint Conf. on the Applications of Air Pollution Meteorology with the A&WMA, Atlanta, GA, Amer. Meteor. Soc., 16.5. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper240176.html.]

  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, doi:10.1175/WAF-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5945 3473 37
PDF Downloads 1713 350 36