Defining Sudden Stratospheric Warmings

Amy H. Butler Cooperative Institute for Research in Environmental Sciences, University of Colorado, and National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division, Boulder, Colorado

Search for other papers by Amy H. Butler in
Current site
Google Scholar
PubMed
Close
,
Dian J. Seidel National Oceanic and Atmospheric Administration/Air Resources Laboratory, College Park, Maryland

Search for other papers by Dian J. Seidel in
Current site
Google Scholar
PubMed
Close
,
Steven C. Hardiman Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Steven C. Hardiman in
Current site
Google Scholar
PubMed
Close
,
Neal Butchart Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Neal Butchart in
Current site
Google Scholar
PubMed
Close
,
Thomas Birner Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
, and
Aaron Match Cornell University, Ithaca, New York

Search for other papers by Aaron Match in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sudden stratospheric warmings (SSWs) are large, rapid temperature rises in the winter polar stratosphere, occurring predominantly in the Northern Hemisphere. Major SSWs are also associated with a reversal of the climatological westerly zonal-mean zonal winds. Circulation anomalies associated with SSWs can descend into the troposphere with substantial surface weather impacts, such as wintertime extreme cold air outbreaks. After their discovery in 1952, SSWs were classified by the World Meteorological Organization. An examination of literature suggests that a single, original reference for an exact definition of SSWs is elusive, but in many references a definition involves the reversal of the meridional temperature gradient and, for major warmings, the reversal of the zonal circulation poleward of 60° latitude at 10 hPa.

Though versions of this definition are still commonly used to detect SSWs, the details of the definition and its implementation remain ambiguous. In addition, other SSW definitions have been used in the last few decades, resulting in inconsistent classification of SSW events. We seek to answer the questions: How has the SSW definition changed, and how sensitive is the detection of SSWs to the definition used? For what kind of analysis is a “standard” definition useful? We argue that a standard SSW definition is necessary for maintaining a consistent and robust metric to assess polar stratospheric wintertime variability in climate models and other statistical applications. To provide a basis for, and to encourage participation in, a communitywide discussion currently underway, we explore what criteria are important for a standard definition and propose possible ways to update the definition.

CORRESPONDING AUTHOR: Amy Butler, NOAA/ESRL/CSD, 325 Broadway, Boulder, CO 80305-3337, E-mail: amy.butler@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-13-00173.2)

Abstract

Sudden stratospheric warmings (SSWs) are large, rapid temperature rises in the winter polar stratosphere, occurring predominantly in the Northern Hemisphere. Major SSWs are also associated with a reversal of the climatological westerly zonal-mean zonal winds. Circulation anomalies associated with SSWs can descend into the troposphere with substantial surface weather impacts, such as wintertime extreme cold air outbreaks. After their discovery in 1952, SSWs were classified by the World Meteorological Organization. An examination of literature suggests that a single, original reference for an exact definition of SSWs is elusive, but in many references a definition involves the reversal of the meridional temperature gradient and, for major warmings, the reversal of the zonal circulation poleward of 60° latitude at 10 hPa.

Though versions of this definition are still commonly used to detect SSWs, the details of the definition and its implementation remain ambiguous. In addition, other SSW definitions have been used in the last few decades, resulting in inconsistent classification of SSW events. We seek to answer the questions: How has the SSW definition changed, and how sensitive is the detection of SSWs to the definition used? For what kind of analysis is a “standard” definition useful? We argue that a standard SSW definition is necessary for maintaining a consistent and robust metric to assess polar stratospheric wintertime variability in climate models and other statistical applications. To provide a basis for, and to encourage participation in, a communitywide discussion currently underway, we explore what criteria are important for a standard definition and propose possible ways to update the definition.

CORRESPONDING AUTHOR: Amy Butler, NOAA/ESRL/CSD, 325 Broadway, Boulder, CO 80305-3337, E-mail: amy.butler@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-13-00173.2)

Supplementary Materials

    • Supplemental Materials (PDF 4.17 MB)
Save
  • Allen, D. R., R. M. Bevilacqua, G. E. Nedoluha, C. E. Randall, and G. L. Manney, 2003: Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett., 30, 1599, doi:10.1029/2003GL017117.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics.Academic Press, 489 pp.

  • Ayarzagüena, B., U. Langematz, S. Meul, S. Oberländer, J. Abalichin, and A. Kubin, 2013: The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys. Res. Lett., 40, 24602465, doi:10.1002/grl.50477.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., 2001: Annular modes in global daily surface pressure. Geophys. Res. Lett., 28, 41154118, doi:10.1029/2001GL013564.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, doi:10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Bancalá, S., K. Krüger, and M. Giorgetta, 2012: The preconditioning of major sudden stratospheric warmings. J. Geophys. Res., 117, D04101, doi:10.1029/2011JD016769.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 11811190, doi:10.1002/qj.633.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and J. R. Albers, 2015: Sudden stratospheric warmings and anomalous upward wave activity flux. 18th Conf. on Middle Atmosphere, Phoenix, AZ, Amer. Meteor. Soc., 8.4. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper269391.html.]

  • Blume, C., K. Matthes, and I. Horenko, 2012: Supervised learning approaches to classify sudden stratospheric warming events. J. Atmos. Sci., 69, 18241840, doi:10.1175/JAS-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., J. Austin, J. R. Knight, A. A. Scaife, and M. L. Gallani, 2000: The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J. Climate, 13, 2142–2159, doi:10.1175/1520-0442(2000)013<2142:TROTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., E. P. Gerber, D. Mitchell, and W. J. M. Seviour, 2014a: New efforts in developing a standard definition for sudden stratospheric warmings. SPARC Newsletter, No. 43, World Climate Research Programme SPARC Office, Zurich, Switzerland, 2324.

  • Butler, A. H., L. M. Polvani, and C. Deser, 2014b: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, doi:10.1088/1748-9326/9/2/024014.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470488, doi:10.1175/JCLI3994.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2001: Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J. Geophys. Res., 106, 27 30727 322, doi:10.1029/2000JD000214.

    • Search Google Scholar
    • Export Citation
  • Coughlin, K., and L. J. Gray, 2009: A continuum of sudden stratospheric warmings. J. Atmos. Sci., 66, 531540, doi:10.1175/2008JAS2792.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Erlebach, P., U. Langematz, and S. Pawson, 1996: Simulations of stratospheric sudden warmings in the Berlin troposphere–stratosphere–mesosphere GCM. Ann. Geophys., 14, 443463, doi:10.1007/s00585-996-0443-6.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. Mitchell, L. Gray, and A. Charlton-Perez, 2011: On the use of geometric moments to examine the continuum of sudden stratospheric warmings. J. Atmos. Sci., 68, 657674, doi:10.1175/2010JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Climate, 25, 70837099, doi:10.1175/JCLI-D-11-00579.1.

    • Search Google Scholar
    • Export Citation
  • Heideman, K. F., 2014: Editorial. J. Atmos. Sci., 71, 4397, doi:10.1175/2014JAS1111.1.

  • Hitchcock, P., and T. G. Shepherd, 2013: Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings. J. Atmos. Sci., 70, 688707, doi:10.1175/JAS-D-12-0111.1.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and G. L. Manney, 2013: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, doi:10.1175/JCLI-D-12-00202.1.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., J. Wang, E. T. Olsen, T. Pagano, L. L. Chen, and Y. L. Yung, 2013: Influence of stratospheric sudden warming on AIRS midtropospheric CO2. J. Atmos. Sci., 70, 25662573, doi:10.1175/JAS-D-13-064.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. W., A. J. Miller, and M. Gelman, 1969: Proposed indices characterizing stratospheric circulation and temperature fields. Mon. Wea. Rev., 97, 565–570, doi:10.1175/1520-0493(1969)097<0565:PICSCA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., 2006: Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett., 33, L06804, doi:10.1029/2005GL024510.

    • Search Google Scholar
    • Export Citation
  • Kohma, M., and K. Sato, 2014: Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings. J. Geophys. Res. Atmos., 119, 10 10010 113, doi:10.1002/2014JD021746.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 2004: Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1977: Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Wea. Rev., 105, 762–770, doi:10.1175/1520-0493(1977)105<0762:IVOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1981: Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res., 86, 96659678, doi:10.1029/JC086iC10p09665.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and B. Naujokat, 2000: The lower Arctic stratosphere in winter since 1952. SPARC Newsletter, No. 15, World Climate Research Programme SPARC Office, Zurich, Switzerland, 1114.

  • Labitzke, K., and M. Kunze, 2005: Stratospheric temperatures over the Arctic: Comparison of three data sets. Meteor. Z., 14, 6574, doi:10.1127/0941-2948/2005/0014-0065.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and Coauthors, 2002: The Berlin Stratospheric Data Series. Meteorological Institute, Free University Berlin, CD-ROM.

  • Labitzke, K., M. Kunze, and S. Brönnimann, 2006: Sunspots, the QBO and the stratosphere in the North Polar Region—20 years later. Meteor. Z., 15, 355363, doi:10.1127/0941-2948/2006/0136.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Climate Dyn., 40, 12231236, doi:10.1007/s00382-012-1331-2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 2584–2596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, doi:10.1029/2005JD006302.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., J. L. Sabutis, S. Pawson, M. L. Santee, B. Naujokat, R. Swinbank, M. E. Gelman, and W. Ebisuzaki, 2003: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies. J. Geophys. Res., 108, 8328, doi:10.1029/2001JD001149.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., K. Krüger, J. L. Sabutis, S. A. Sena, and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and Coauthors, 2008: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and Coauthors, 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and L. Bengtsson, 1996: Stratospheric climate and variability from a general circulation model and observations. Climate Dyn., 12, 615639, doi:10.1007/BF00216270.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2013: Planetary-scale wave activity as a source of varying tropospheric response to stratospheric sudden warming events: A case study. J. Geophys. Res. Atmos., 118, 10 99411 006, doi:10.1002/jgrd.50871.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479–1494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, doi:10.1175/2008JCLI2365.1.

    • Search Google Scholar
    • Export Citation
  • McInturff, R. M., Ed., 1978: Stratospheric warmings: Synoptic, dynamic and general-circulation aspects. NASA Reference Publ. NASA-RP-1017, 174pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780010687.pdf.]

  • McIntyre, M. E., and T. N. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, doi:10.1016/0021-9169(84)90063-1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Climate, 22, 54495463, doi:10.1175/2009JCLI3069.1.

    • Search Google Scholar
    • Export Citation
  • Meriwether, J. W., and A. J. Gerrard, 2004: Mesosphere inversion layers and stratosphere temperature enhancements. Rev. Geophys., 42, RG3003, doi:10.1029/2003RG000133.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., A. J. Charlton-Perez, and L. J. Gray, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68, 11941213, doi:10.1175/2010JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., and Coauthors, 2012: The nature of Arctic polar vortices in chemistry–climate models. Quart. J. Roy. Meteor. Soc., 138, 16811691, doi:10.1002/qj.1909.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, doi:10.1029/2005GL024784.

    • Search Google Scholar
    • Export Citation
  • O’Neill, A., and B. F. Taylor, 1979: A study of the major stratospheric warming of 1976/77. Quart. J. Roy. Meteor. Soc., 105, 7192, doi:10.1002/qj.49710544306.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, and T. J. Hinton, 2013: Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office climate model: High top versus low top. J. Climate, 26, 15951606, doi:10.1175/JCLI-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1981: Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism. J. Atmos. Sci., 38, 844–855, doi:10.1175/1520-0469(1981)038<0844:DSOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and B. Naujokat, 1999: The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res., 104, 14 209–14 222, doi:10.1029/1999JD900211.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R., 1975: Stratospheric evolution of sudden warmings in 1969–74 determined from measured infrared radiation fields. J. Atmos. Sci., 32, 211–224, doi:10.1175/1520-0469(1975)032<0211:TSEOSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., J. Kim, E. Manzini, and J. Kröger, 2012: A stratospheric connection to Atlantic climate variability. Nat. Geosci., 5, 783787, doi:10.1038/ngeo1586.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, and N. K. Balachandran, 1988: The GISS Global Climate-Middle Atmosphere Model. Part II: Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag. J. Atmos. Sci., 45, 371–386, doi:10.1175/1520-0469(1988)045<0371:TGGCMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Scherhag, R., 1952: Die explosionsartigen Stratosphärenerwärmungen des Spätwinter 1951/1952 (The explosive warmings in the stratosphere of the late winter 1951/1952). Ber. Dtsch. Wetterdienstes U.S. Zone, 38, 5163.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., 1978: Stratospheric warmings: Observations and theory. Rev. Geophys., 16, 521538, doi:10.1029/RG016i004p00521.

  • Schoeberl, M. R., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 4652, doi:10.1126/science.251.4989.46.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, doi:10.1002/grl.50927.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452455, doi:10.1038/20905.

    • Search Google Scholar
    • Export Citation
  • Siskind, D. E., S. D. Eckermann, L. Coy, J. P. McCormack, and C. E. Randall, 2007: On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent. Geophys. Res. Lett., 34, L09806, doi:10.1029/2007GL029293.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421–1428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Van Loon, H., R. L. Jenne, and K. Labitzke, 1973: Zonal harmonic standing waves. J. Geophys. Res., 78, 44634471, doi:10.1029/JC078i021p04463.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and W. J. Randel, 1999: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56, 1594–1613, doi:10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO CAS, 1978: Abridged final report of the seventh session, Manila, 27 February–10 March 1978. Secretariat of the WMO Rep. WMO-509, 113 pp.

  • WMO/IQSY, 1964: International Years of the Quiet Sun (IQSY), 1964–1965: Alert messages with special references to stratwarms. Secretariat of the WMO WMO/IQSY Rep. 6, 19 pp. + 3 appendices.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5783 2328 83
PDF Downloads 3487 989 52