Revisiting the 26.5°C Sea Surface Temperature Threshold for Tropical Cyclone Development

Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
,
Emily L. Davies School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Emily L. Davies in
Current site
Google Scholar
PubMed
Close
,
Jonathan G. Fairman Jr. Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Jonathan G. Fairman Jr. in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Galarneau Jr. Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
, and
David M. Schultz Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A high sea surface temperature is generally accepted to be one of the necessary ingredients for tropical cyclone development, indicative of the potential for surface heat and moisture fluxes capable of fueling a self-sustaining circulation. Although the minimum 26.5°C threshold for tropical cyclogenesis has become a mainstay in research and education, the fact that a nonnegligible fraction of storm formation events (about 5%) occur over cooler waters casts some doubt on the robustness of this estimate. Tropical cyclogenesis over subthreshold sea surface temperatures is associated with low tropopause heights, indicative of the presence of a cold trough aloft. To focus on this type of development environment, the applicability of the 26.5°C threshold is investigated for tropical transitions from baroclinic precursor disturbances in all basins between 1989 and 2013. Although the threshold performs well in the majority of cases without appreciable environmental baroclinicity, the potential for development is underestimated by up to 27% for systems undergoing tropical transition. An alternative criterion of a maximum 22.5°C difference between the tropopause-level and 850-hPa equivalent potential temperatures (defined as the coupling index) is proposed for this class of development. When combined with the standard 26.5°C sea surface temperature threshold for precursor-free environments, error rates are reduced to 3%–6% for all development types. The addition of this physically relevant representation of the deep-tropospheric state to the ingredients-based conceptual model for tropical cyclogenesis improves the representation of the important tropical transition-based subset of development events.

CORRESPONDING AUTHOR: David Schultz, Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom, E-mail: david.schultz@manchester.ac.uk

A supplement to this article is available online (DOI:10.1175/BAMS-D-13-00254.2)

Abstract

A high sea surface temperature is generally accepted to be one of the necessary ingredients for tropical cyclone development, indicative of the potential for surface heat and moisture fluxes capable of fueling a self-sustaining circulation. Although the minimum 26.5°C threshold for tropical cyclogenesis has become a mainstay in research and education, the fact that a nonnegligible fraction of storm formation events (about 5%) occur over cooler waters casts some doubt on the robustness of this estimate. Tropical cyclogenesis over subthreshold sea surface temperatures is associated with low tropopause heights, indicative of the presence of a cold trough aloft. To focus on this type of development environment, the applicability of the 26.5°C threshold is investigated for tropical transitions from baroclinic precursor disturbances in all basins between 1989 and 2013. Although the threshold performs well in the majority of cases without appreciable environmental baroclinicity, the potential for development is underestimated by up to 27% for systems undergoing tropical transition. An alternative criterion of a maximum 22.5°C difference between the tropopause-level and 850-hPa equivalent potential temperatures (defined as the coupling index) is proposed for this class of development. When combined with the standard 26.5°C sea surface temperature threshold for precursor-free environments, error rates are reduced to 3%–6% for all development types. The addition of this physically relevant representation of the deep-tropospheric state to the ingredients-based conceptual model for tropical cyclogenesis improves the representation of the important tropical transition-based subset of development events.

CORRESPONDING AUTHOR: David Schultz, Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom, E-mail: david.schultz@manchester.ac.uk

A supplement to this article is available online (DOI:10.1175/BAMS-D-13-00254.2)

Supplementary Materials

    • Supplemental Materials (PDF 2.11 MB)
Save
  • Ackerman, S. A., and J. A. Knox, 2015: Meteorology: Understanding the Atmosphere. 4th ed. Jones and Bartlett Learning, 575 pp.

  • Ahrens, C. D., 2009: Meteorology Today: An Introduction to Weather, Climate, and the Environment. 9th ed. Cengage Learning, 549 pp.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013, doi:10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291, doi:10.1175/1520-0493(1995123<3268:PTCRIA>2.0.CO;2).

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, doi:10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and R. J. Reed, 1989: Cyclogenesis in cold air masses. Wea. Forecasting, 4, 133156, doi:10.1175/1520-0434(1989)004<0133:CICAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

    • Search Google Scholar
    • Export Citation
  • Cram, T., J. Persing, M. T. Montgomery, and S. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: The threshold sea surface temperature condition for tropical cyclogenesis. J. Climate, 24, 45704576, doi:10.1175/JCLI-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and C. H. Bishop, 1994: Eady edge waves and rapid development. J. Atmos. Sci., 51, 19301946, doi:10.1175/1520-0469(1994)051<1930:EEWARD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2010: Simulations of subtropical cyclones in a baroclinic channel model. J. Atmos. Sci., 67, 28712892, doi:10.1175/2010JAS3411.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem. Bull. Amer. Meteor. Soc., 85, 16571662, doi:10.1175/BAMS-85-11-1657.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., M. S. Reboita, and R. P. da Rocha, 2013: Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J. Geophys. Res. Atmos., 118, 10 87010 883, doi:10.1002/jgrd.50830.

    • Search Google Scholar
    • Export Citation
  • Duong, T., 2007: ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Software, 21 (7). [Availble online at www.jstatsoft.org/v21/i07/paper.]

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, doi:10.5194/adgeo-2-217-2005.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117, doi:10.1111/j.1600-0870.1989.tb00362.x.

  • Ernst, J. A., and M. Matson, 1983: A Mediterranean tropical storm? Weather, 38, 332337, doi:10.1002/j.1477-8696.1983.tb04818.x.

  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, doi:10.1175/2009MWR2468.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, doi:10.1175/JCLI-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., 1958: Hurricanes and the sea-surface temperature field. J. Meteor., 15, 328333, doi:10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Føre, I., J. E. Kristjánsson, E. W. Kolstad, T. J. Bracegridle, O. Saetra, and B. Røsting, 2012: A “hurricane-like” polar low fuelled by sensible heat flux: High-resolution numerical simulations. Quart. J. Roy. Meteor. Soc., 138, 13081324, doi:10.1002/qj.1876.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1989: Regularized discriminant analysis. J. Amer. Stat. Assoc., 84, 165175, doi:10.1080/01621459.1989.10478752.

  • Fu, Q., S. Manabe, and C. M. Johanson, 2011: On the warming in the tropical upper troposphere: Model versus observations. Geophys. Res. Lett., 38, l15704, doi:10.1029/2011GL048101.

    • Search Google Scholar
    • Export Citation
  • Galvin, J. F. P., 2008: The weather and climate of the tropics: Part 7—Tropical revolving storms. Weather, 63, 327333, doi:10.1002/wea.252.

    • Search Google Scholar
    • Export Citation
  • Garde, L. A., A. B. Pezza, and J. A. T. Bye, 2010: Tropical transition of the 2001 Australian Duck. Mon. Wea. Rev., 138, 20382057, doi:10.1175/2009MWR3220.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kelly, W. E. , Jr., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471480, doi:10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., J. A. Knaff, C. R. Sampson, G. M. Riggio, and A. D. Schnapp, 2013: A pressure-based analysis of the historical western North Pacific tropical cyclone intensity record. Mon. Wea. Rev., 141, 26112631, doi:10.1175/MWR-D-12-00323.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Koba, H., T. Hagiwara, S. Osano, and S. Akashi, 1991: Relationships between CI number and minimum sea level pressure/maximum wind speed of tropical cyclones. Geophys. Mag., 44, 1525.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Laing, A., and J. L. Evans, 2011: Introduction to Tropical Meteorology. 2nd ed. University Corporation for Atmospheric Research. [Available online at www.goes-r.gov/users/comet/tropical/textbook_2nd_edition/index.htm.]

  • Lee, C. S., R. Edson, and W. M. Gray, 1989: Some large-scale characteristics associated with tropical cyclone development in the north Indian Ocean during FGGE. Mon. Wea. Rev., 117, 407426, doi:10.1175/1520-0493(1989)117<0407:SLSCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauk, R. G., and J. S. Hobgood, 2012: Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Wea. Forecasting, 27, 14331447, doi:10.1175/WAF-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, C. A. Davis, E. H. Atallah, J. R. Gyakum, and K. A. Emanuel, 2006: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053, doi:10.1175/MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010: Development of an Alpine lee cyclone during MAP D-PHASE. Part I: Case analysis and evaluation of control simulations. Mon. Wea. Rev., 138, 22812307, doi:10.1175/2009MWR3147.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: The use of mean layer winds as a hurricane steering mechanism. U.S. National Hurricane Research Project Tech. Rep. 18, 24 pp.

  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579, doi:10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmén, E. H., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 2638.

  • Palmén, E. H., 1956: Formation and development of tropical cyclones. Proc. Tropical Cyclone Symp., Brisbane, QLD, Australia, Bureau of Meteorology, 213–231.

  • Pezza, A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., L. A. Garde, J. A. P. Veiga, and I. Simmonds, 2014: Large scale features and energetics of the hybrid subtropical low “Duck” over the Tasman Sea. Climate Dyn., 42, 453466, doi:10.1007/s00382-013-1688-x.

    • Search Google Scholar
    • Export Citation
  • Qi, L., L. M. Leslie, and M. S. Speer, 2006: Climatology of cyclones over the southwest Pacific: 1992-2001. Meteor. Atmos. Phys., 91, 201209, doi:10.1007/s00703-005-0149-4.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531549, doi:10.1002/qj.49710544504.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and C. Zick, 1987: A subsynoptic vortex over the Mediterranean Sea with some resemblance to polar lows. Tellus, 39A, 408425, doi:10.1111/j.1600-0870.1987.tb00318.x.

    • Search Google Scholar
    • Export Citation
  • Reale, O., and R. Atlas, 2001: Tropical cyclone–like vortices in the extratropics: Observational evidence and synoptic analysis. Wea. Forecasting, 16, 734, doi:10.1175/1520-0434(2001)016<0007:TCLVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Riehl, H. H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1964: Tropical cyclones of the eastern North Pacific as revealed by TIROS observations. J. Appl. Meteor., 3, 347366, doi:10.1175/1520-0450(1964)003<0347:TCOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. Tech. Rep. UHMET-75–05, Dept. of Meteorology, University of Hawaii, 35 pp.

  • Schumacher, A. B., M. DeMaria, and J. Knaff, 2009: Objective estimation of the 24-h probability of tropical cyclone formation. Wea. Forecasting, 24, 456471, doi:10.1175/2008WAF2007109.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., L. S. Fedor, and T. Hampel, 1987: Researching aircraft measurements of a polar low over the Norwegian Sea. Tellus, 39A, 272306, doi:10.1111/j.1600-0870.1987.tb00309.x.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. Seidel, and K. P. Shine, 2011: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 6688, doi:10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Tous, M., and R. Romero, 2013: Meteorological environments associated with medicane development. Int. J. Climatol., 33, 114, doi:10.1002/joc.3428.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., S. Fueglistaler, I. M. Held, T. R. Knutson, and Z. Ming, 2013: Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 38773891, doi:10.1175/JCLI-D-12-00503.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp.

  • Watanabe, S. I., and H. Niino, 2014: Genesis and development mechanisms of a polar mesocyclone over the Japan Sea. Mon. Wea. Rev., 142, 22482270, doi:10.1175/MWR-D-13-00226.1.

    • Search Google Scholar
    • Export Citation
  • Wendland, W. M., 1977: Tropical storm frequencies related to sea surface temperatures. J. Appl. Meteor., 16, 477481, doi:10.1175/1520-0450(1977)016<0477:TSFRTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, J., 2009: The AMS Weather Book: The Ultimate Guide to America’s Weather. Amer. Meteor. Soc., 316 pp.

  • Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 30443067, doi:10.1175/JAS4001.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, doi:10.2151/jmsj.84.405.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4023 987 73
PDF Downloads 2335 542 24