National Weather Service Forecasters Use GPS Precipitable Water Vapor for Enhanced Situational Awareness during the Southern California Summer Monsoon

Angelyn W. Moore Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Angelyn W. Moore in
Current site
Google Scholar
PubMed
Close
,
Ivory J. Small National Oceanographic and Atmospheric Administration, National Weather Service Forecast Office, San Diego, California

Search for other papers by Ivory J. Small in
Current site
Google Scholar
PubMed
Close
,
Seth I. Gutman National Oceanographic and Atmospheric Administration Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Seth I. Gutman in
Current site
Google Scholar
PubMed
Close
,
Yehuda Bock Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Yehuda Bock in
Current site
Google Scholar
PubMed
Close
,
John L. Dumas National Oceanographic and Atmospheric Administration, National Weather Service Forecast Office, Oxnard, California

Search for other papers by John L. Dumas in
Current site
Google Scholar
PubMed
Close
,
Peng Fang Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Peng Fang in
Current site
Google Scholar
PubMed
Close
,
Jennifer S. Haase Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Jennifer S. Haase in
Current site
Google Scholar
PubMed
Close
,
Mark E. Jackson National Oceanographic and Atmospheric Administration, National Weather Service Forecast Office, Oxnard, California

Search for other papers by Mark E. Jackson in
Current site
Google Scholar
PubMed
Close
, and
Jayme L. Laber National Oceanographic and Atmospheric Administration, National Weather Service Forecast Office, Oxnard, California

Search for other papers by Jayme L. Laber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the North American Monsoon, low-to-midlevel moisture is transported in surges from the Gulf of California and Eastern Pacific Ocean into Mexico and the American Southwest. As rising levels of precipitable water interact with the mountainous terrain, severe thunderstorms can develop, resulting in flash floods that threaten life and property. The rapid evolution of these storms, coupled with the relative lack of upper-air and surface weather observations in the region, make them difficult to predict and monitor, and guidance from numerical weather prediction models can vary greatly under these conditions. Precipitable water vapor (PW) estimates derived from continuously operating ground-based GPS receivers have been available for some time from NOAA’s GPS-Met program, but these observations have been of limited utility to operational forecasters in part due to poor spatial resolution. Under a NASA Advanced Information Systems Technology project, 37 real-time stations were added to NOAA’s GPS-Met analysis providing 30-min PW estimates, reducing station spacing from approximately 150 km to 30 km in Southern California. An 18–22 July 2013 North American Monsoon event provided an opportunity to evaluate the utility of the additional upper-air moisture observations to enhance National Weather Service (NWS) forecaster situational awareness during the rapidly developing event. NWS forecasters used these additional data to detect rapid moisture increases at intervals between the available 1–6-h model updates and approximately twice-daily radiosonde observations, and these contributed tangibly to the issuance of timely flood watches and warnings in advance of flash floods, debris flows, and related road closures.

Retired

CORRESPONDING AUTHOR: Angelyn W. Moore, 4800 Oak Grove Dr. MS 238-600, Pasadena, CA 91109, E-mail: Angelyn.W.Moore@jpl.nasa.gov

A supplement to this article is available online (DOI:10.1175/BAMS-D-14-00095.2)

Abstract

During the North American Monsoon, low-to-midlevel moisture is transported in surges from the Gulf of California and Eastern Pacific Ocean into Mexico and the American Southwest. As rising levels of precipitable water interact with the mountainous terrain, severe thunderstorms can develop, resulting in flash floods that threaten life and property. The rapid evolution of these storms, coupled with the relative lack of upper-air and surface weather observations in the region, make them difficult to predict and monitor, and guidance from numerical weather prediction models can vary greatly under these conditions. Precipitable water vapor (PW) estimates derived from continuously operating ground-based GPS receivers have been available for some time from NOAA’s GPS-Met program, but these observations have been of limited utility to operational forecasters in part due to poor spatial resolution. Under a NASA Advanced Information Systems Technology project, 37 real-time stations were added to NOAA’s GPS-Met analysis providing 30-min PW estimates, reducing station spacing from approximately 150 km to 30 km in Southern California. An 18–22 July 2013 North American Monsoon event provided an opportunity to evaluate the utility of the additional upper-air moisture observations to enhance National Weather Service (NWS) forecaster situational awareness during the rapidly developing event. NWS forecasters used these additional data to detect rapid moisture increases at intervals between the available 1–6-h model updates and approximately twice-daily radiosonde observations, and these contributed tangibly to the issuance of timely flood watches and warnings in advance of flash floods, debris flows, and related road closures.

Retired

CORRESPONDING AUTHOR: Angelyn W. Moore, 4800 Oak Grove Dr. MS 238-600, Pasadena, CA 91109, E-mail: Angelyn.W.Moore@jpl.nasa.gov

A supplement to this article is available online (DOI:10.1175/BAMS-D-14-00095.2)

Supplementary Materials

    • Supplemental Materials (ZIP 175 MB)
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., 1986: Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Climate Appl. Meteor., 25, 532545, doi:10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arellano, A., C. Castro, Y. Serra, P. Broxton, T. Luong, J. Moker, and S. Silver, cited 2015: Monsoon Weather Discussions 2013. [Available online at http://monsoonwx2013.wordpress.com.]

  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, doi:10.1175/2009JCLI2487.1.

    • Search Google Scholar
    • Export Citation
  • Böhm, J., A. Niell, P. Tregoning, and H. Schuh, 2006: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304, doi:10.1029/2005GL025546.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, doi:10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 15931607, doi:10.1029/RS020i006p01593.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., 2005: Using sounding data to detect gulf surges during the North American monsoon. Mon. Wea. Rev., 133, 30473052, doi:10.1175/MWR3029.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and J. C. Leal, 2003: Summertime surges over the Gulf of California: Aspects of their climatology, mean sounding, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Wea. Forecasting, 18, 5574, doi:10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duan, J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838, doi:10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, P., M. Bevis, Y. Bock, S. Gutman, and D. Wolfe, 1998: GPS meteorology: Reducing systematic errors in geodetic estimates for zenith delay. Geophys. Res. Lett., 25, 35833586, doi:10.1029/98GL02755.

    • Search Google Scholar
    • Export Citation
  • Favors, J. E., and J. T. Abatzoglou, 2013: Regional surges of monsoonal moisture into the southwestern United States. Mon. Wea. Rev., 141, 182191, doi:10.1175/MWR-D-12-00037.1.

    • Search Google Scholar
    • Export Citation
  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 138, 35403555, doi:10.1175/2010MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Wea. Rev., 128, 29832989, doi:10.1175/1520-0493(2000)128<2983:TRBTEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., S. R. Sahm, S. G. Benjamin, B. E. Schwartz, K. L. Holub, J. Q. Steward, and T. L. Smith, 2004: Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA Forecast Systems Laboratory: Impact on weather forecasts. J. Meteor. Soc. Japan, 82, 351360, doi:10.2151/jmsj.2004.351.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, doi:10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Y. Honda, and Y. Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensional variational data assimilation system. J. Meteor. Soc. Japan, 85, 255276, doi:10.2151/jmsj.85.255.

    • Search Google Scholar
    • Export Citation
  • Ladwig, W., and D. Stensrud, 2009: Relationship between tropical easterly waves and precipitation during the North American monsoon. J. Climate, 22, 258271, doi:10.1175/2008JCLI2241.1.

    • Search Google Scholar
    • Export Citation
  • Marcus, S., J. Kim, T. Chin, D. Danielson, and J. Laber, 2007: Influence of GPS precipitable water vapor retrievals on quantitative precipitation forecasting in Southern California. J. Appl. Meteor. Climatol., 46, 18281839, doi:10.1175/2007JAMC1502.1.

    • Search Google Scholar
    • Export Citation
  • Means, J. D., 2013: GPS precipitable water as a diagnostic of the North American Monsoon in California and Nevada. J. Climate, 26, 14321444, doi:10.1175/JCLI-D-12-00185.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California's coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A Water vapor flux tool for precipitation forecasting. Proc. Inst. Civ. Eng.: Water Management, 162, 8394, doi:10.1680/wama.2009.162.2.83.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Pytlak, E., M. Goering, and A. Bennett, 2005: Upper-tropospheric troughs and their interaction with the North American Monsoon. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3. [Available online at https://ams.confex.com/ams/pdfpapers/85393.pdf.]

  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. J. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP Observers. J. Hydrometeor., 11, 12861306, doi:10.1175/2010JHM1232.1.

    • Search Google Scholar
    • Export Citation
  • Schiffer, N. J., and S. W. Nesbitt, 2012: Flow, moisture, and thermodynamic variability associated with Gulf of California surges within the North American Monsoon. J. Climate, 25, 42204241, doi:10.1175/JCLI-D-11-00266.1.

    • Search Google Scholar
    • Export Citation
  • Small, I. J., and B. Maxwell, 2014: Early wind forecasting results from the 1.5 KM WRF-ARW in extreme southwestern California. 16th Conf. on Mountain Meteorology, San Diego, CA, Amer. Meteor. Soc., 3. [Available online at https://ams.confex.com/ams/16MountMet/webprogram/Paper251612.html.]

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, S. I. Gutman, and S. R. Sahm, 2007: Forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Wea. Rev., 135, 29142930, doi:10.1175/MWR3436.1.

    • Search Google Scholar
    • Export Citation
  • Tubbs, A. M., 1972: Summer thunderstorms over Southern California. Mon. Wea. Rev., 100, 799807, doi:10.1175/1520-0493(1972)100<0799:STOSC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A., and Coauthors, 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, doi:10.1175/JTECH-D-12-00217.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Wolfe, D., and S. I. Gutman, 2000: Developing an operational, surface-based, GPS, water vapor observing system for NOAA: Network design and results. J. Atmos. Oceanic Technol., 17, 426440, doi:10.1175/1520-0426(2000)017<0426:DAOSBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 0 0
Full Text Views 1256 281 31
PDF Downloads 754 164 15