• Angell, J. K., , D. H. Pack, , G. C. Holzworth, , and C. R. Dickson, 1966: Tetroon trajectories in an urban atmosphere. J. Appl. Meteor., 5, 565–572, doi:10.1175/1520-0450(1966)005<0565:TTIAUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., , D. H. Pack, , L. Machta, , C. R. Dickson, , and W. H. Hoecker, 1972: Three-dimensional air trajectories determined from tetroon-flights in the planetary boundary layer of the Los Angeles Basin. J. Appl. Meteor., 11, 451–471, doi:10.1175/1520-0450(1972)011<0451:TDATDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., , C. R. Dickson, , and W. H. Hoecker Jr., 1976: Tetroon trajectories in the Los Angeles Basin defining the source of air reaching the San Bernardino-Riverside area in late afternoon. J. Appl. Meteor., 15, 197–204, doi:10.1175/1520-0450(1976)015<0197:TTITLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashrafi, K., , M. Shafiepour-Motlagh, , A. Aslemand, , and S. Ghader, 2014: Dust storm simulation over Iran using HYSPLIT. J. Environ. Health Sci. Eng., 12, 9,doi:10.1186/2052-336X-12-9.

    • Search Google Scholar
    • Export Citation
  • Azzi, M., , G. M. Johnson, , R. Hyde, , and M. Young, 1995: Prediction of NO2 and O3 concentrations for NOX plumes photochemically reacting in urban air. Math. Comput. Modell., 21, 3948, doi:10.1016/0895-7177(95)00050-C.

    • Search Google Scholar
    • Export Citation
  • Baker, J., 2010: A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK. Atmos. Environ., 44, 563571, doi:10.1016/j.atmosenv.2009.10.030.

    • Search Google Scholar
    • Export Citation
  • Barad, M. L., Ed., 1958: Project Prairie Grass—A field program in diffusion. Vols. I and II. Air Force Cambridge Research Center Geophysical Research Paper 59, NTID PB 151424, PB 1514251, 439pp.

    • Search Google Scholar
    • Export Citation
  • Becker, A., and Coauthors, 2007: Global backtracking of anthropogenic radionuclides by means of a receptor oriented ensemble dispersion modelling system in support of Nuclear-Test-Ban Treaty verification. Atmos. Environ., 41, 45204534, doi:10.1016/j.atmosenv.2006.12.048.

    • Search Google Scholar
    • Export Citation
  • Black, T., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9, 265–278, doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borge, R., , J. Lumbreras, , S. Vardoulakis, , P. Kassomenos, , and E. Rodriguez, 2007: Analysis of long-range transport influences on urban PM10 using two stage atmospheric trajectory clusters. Atmos. Environ., 41, 44344450, doi:10.1016/j.atmosenv.2007.01.053.

    • Search Google Scholar
    • Export Citation
  • Bowyer, T. W., , R. Kephart, , P. W. Eslinger, , J. I. Friese, , H. S. Miley, , and P. R. J. Saey, 2013: Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J. Environ. Radioact., 115, 192200, doi:10.1016/j.jenvrad.2012.07.018.

    • Search Google Scholar
    • Export Citation
  • Cabello, M., , J. A. G. Orza, , and V. Galiano, 2008: Air mass origin and its influence over the aerosol size distribution: A study in SE Spain. Adv. Sci. Res., 2, 4752, doi:10.5194/asr-2-47-2008.

    • Search Google Scholar
    • Export Citation
  • Challa, V. S., and Coauthors, 2008: Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model. Environ. Fluid Mech., 8, 367387, doi:10.1007/s10652-008-9098-z.

    • Search Google Scholar
    • Export Citation
  • Chen, B., , A. F. Stein, , N. Castell, , J. D. de la Rosa, , A. M. Sanchez de la Campa, , Y. Gonzalez-Castanedo, , and R. R. Draxler, 2012: Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos. Environ., 49, 114122, doi:10.1016/j.atmosenv.2011.12.014.

    • Search Google Scholar
    • Export Citation
  • Chen, B., , A. F. Stein, , P. Guerrero Maldonado, , A. M. Sanchez de la Campa, , Y. Gonzalez-Castanedo, , N. Castell, , and J. D. de la Rosa, 2013: Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmos. Environ., 71, 234244, doi:10.1016/j.atmosenv.2013.02.013.

    • Search Google Scholar
    • Export Citation
  • Chock, D. P., , and S. L. Winkler, 1994a: A particle grid air quality modeling approach: 1. The dispersion aspect. J. Geophys. Res., 99 (D1), 10191031, doi:10.1029/93JD02795.

    • Search Google Scholar
    • Export Citation
  • Chock, D. P., , and S. L. Winkler, 1994b: A particle grid air quality modeling approach: 2. Coupling with chemistry. J. Geophys. Res., 99 (D1), 10331041, doi:10.1029/93JD02796.

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , B. Commoner, , H. Eisl, , P. W. Bartlett, , A. Dickar, , C. Hill, , J. Quigley, , and J. Rosenthal, 1995: Quantitative estimation of the entry of dioxins, furans and hexachlorobenzene into the Great Lakes from airborne and waterborne sources. Queens College Center for the Biology of Natural Systems Rep., 115 pp. [Available online at www.arl.noaa.gov/documents/reports/Great_Lakes_Dioxin_HCB_Report_1995.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , B. Commoner, , P. W. Bartlett, , P. Cooney, , and H. Eisl, 1997a: Exposure to endocrine disruptors from long range air transport of pesticides. CBNS, Queens College, CUNY Rep. to the W. Alton Jones Foundation, 66 pp. [Available online www.arl.noaa.gov/data/web/reports/cohen/atrazine_report.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , B. Commoner, , P. W. Bartlett, , H. Eisl, , C. Hill, , and J. Rosenthal, 1997b: Development and application of an air transport model for dioxins and furans. Organohalogen Compd., 33, 214219.

    • Search Google Scholar
    • Export Citation
  • Cohen, M., and Coauthors, 2002: Modeling the atmospheric transport and deposition of PCDD/F to the Great Lakes. Environ. Sci. Technol., 36, 48314845, doi:10.1021/es0157292.

    • Search Google Scholar
    • Export Citation
  • Cohen, M., and Coauthors, 2004: Modeling the atmospheric transport and deposition of mercury to the Great Lakes. Environ. Res., 95, 247265, doi:10.1016/j.envres.2003.11.007.

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , R. Draxler, , and R. Artz, 2011: Modeling atmospheric mercury deposition to the Great Lakes. NOAA Air Resources Laboratory Final Rep. for work conducted with FY2010 funding from the Great Lakes Restoration Initiative, 160pp. [Available online www.arl.noaa.gov/documents/reports/GLRI_FY2010_Atmospheric_Mercury_Final_Report_2011_Dec_16.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , R. Draxler, , and R. Artz, 2013: Modeling atmospheric mercury deposition to the Great Lakes: Examination of the influence of variations in model inputs, parameters, and algorithms on model results. NOAA Air Resources Laboratory Final Rep. for work conducted with FY2011 funding from the Great Lakes Restoration Initiative, 157 pp. [Available online at www.arl.noaa.gov/documents/reports/GLRI_FY2011_Atmospheric_Mercury_Final_Report_2013_June_30.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cohen, M., , R. Draxler, , and R. Artz, 2014: Modeling atmospheric mercury deposition to the Great Lakes: Projected consequences of alternative future emissions scenarios. NOAA Air Resources Laboratory Final Rep. for work conducted with FY2012 funding from the Great Lakes Restoration Initiative, 193 pp. [Available online at www.arl.noaa.gov/documents/reports/GLRI_FY2012_Atmos_Mercury_09_Oct_2014.pdf.]

    • Search Google Scholar
    • Export Citation
  • Collini, E., , M. S. Osores, , A. Folch, , J. G. Viramonte, , G. Villarosa, , and G. Salmuni, 2013: Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Nat. Hazards, 66, 389412, doi:10.1007/s11069-012-0492-y.

    • Search Google Scholar
    • Export Citation
  • Connan, O., , K. Smith, , C. Organo, , L. Solier, , D. Maro, , and D. Hébert, 2013: Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with 85Kr measurements made in the vicinity of nuclear reprocessing plant. J. Environ. Radioact., 124, 266277, doi:10.1016/j.jenvrad.2013.06.004.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, A., , T. Wang, , and C. Fu, 2013: Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China. J. Geophys. Res. Atmos., 118, 94759488, doi:10.1002/jgrd.50714.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1982: Measuring and modeling the transport and dispersion of kRYPTON-85 1500km from a point source. Atmos. Environ., 16, 27632776, doi:10.1016/0004-6981(82)90027-0.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1987: Sensitivity of a trajectory model to the spatial and temporal resolution of the meteorological data during CAPTEX. J. Climate Appl. Meteor., 26, 1577–1588, doi:10.1175/1520-0450(1987)026<1577:SOATMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1992: Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT): Version 3.0—User’s guide and model description. Air Resources Laboratory Tech. Memo. ERL ARL-195, 84 pp. [Available online at www.arl.noaa.gov/documents/reports/ARL%20TM-195.pdf.]

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2000: Meteorological factors of ozone predictability at Houston, Texas. J. Air Waste Manag. Assoc., 50, 259271, doi:10.1080/10473289.2000.10463999.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2003: Evaluation of an ensemble dispersion calculation. J. Appl. Meteor., 42, 308–317, doi:10.1175/1520-0450(2003)042<0308:EOAEDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2006: The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, D.C. Wea. Forecasting, 21, 383394, doi:10.1175/WAF926.1.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 2007: Demonstration of a global modeling methodology to determine the relative importance of local and long-distance sources. Atmos. Environ., 41, 776789, doi:10.1016/j.atmosenv.2006.08.052.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and A. D. Taylor, 1982: Horizontal dispersion parameters for long-range transport modeling. J. Appl. Meteor., 21, 367–372, doi:10.1175/1520-0450(1982)021<0367:HDPFLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and B. J. B. Stunder, 1988: Modeling the CAPTEX vertical tracer concentration profiles. J. Appl. Meteor., 27, 617–625, doi:10.1175/1520-0450(1988)027<0617:MTCVTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and J. L. Heffter, Eds., 1989: Across North America Tracer Experiment (ANATEX) volume I: Description, ground-level sampling at primary sites, and meteorology. NOAA Tech. Memo. ERL ARL-167. [Available online at www.arl.noaa.gov/documents/reports/arl-167.pdf.]

  • Draxler, R. R., , and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, 24 pp. [Available online at www.arl.noaa.gov/documents/reports/arl-224.pdf.]

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , and G. D. Rolph, 2012: Evaluation of the Transfer Coefficient Matrix (TCM) approach to model the atmospheric radionuclide air concentrations from Fukushima. J. Geophys. Res., 117, D05107, doi:10.1029/2011JD017205.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., , P. Ginoux, , and A. F. Stein, 2010: An empirically derived emission algorithm for wind-blown dust. J. Geophys. Res., 115, D16212, doi:10.1029/2009JD013167.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Coauthors, 2013: World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J. Environ. Radioact., 139, 172184, doi:10.1016/j.jenvrad.2013.09.014.

    • Search Google Scholar
    • Export Citation
  • Efstathiou, C., , S. Isukapalli, , and P. Georgopoulos, 2011: A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ., 45, 22602276, doi:10.1016/j.atmosenv.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Escudero, M., , A. Stein, , R. R. Draxler, , X. Querol, , A. Alastuey, , S. Castillo, , and A. Avila, 2006: Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. J. Geophys. Res., 111, D06210, doi:10.1029/2005JD006395.

    • Search Google Scholar
    • Export Citation
  • Escudero, M., , A. Stein, , R. R. Draxler, , X. Querol, , A. Alastuey, , S. Castillo, , and A. Avila, 2011: Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos. Res., 99 (3–4), 518527, doi:10.1016/j.atmosres.2010.12.002.

    • Search Google Scholar
    • Export Citation
  • Fay, B., , H. Glaab, , I. Jacobsen, , and R. Schrodin, 1995: Evaluation of Eulerian and Lagrangian atmospheric transport models at the Deutscher Wetterdienst using ANATEX surface tracer data. Atmos. Environ., 29, 24852497, doi:10.1016/1352-2310(95)00144-N.

    • Search Google Scholar
    • Export Citation
  • Ferber, G. J., , J. L. Heffter, , R. R. Draxler, , R. J. Lagomarsino, , F. L. Thomas, , and R. N. Dietz, 1986: Cross-Appalachian Tracer Experiment (CAPTEX ‘83) Final Report. Air Resources Laboratory NOAA Tech. Memo. ERL ARL-142, 60 pp. [Available online at www.arl.noaa.gov/documents/reports/arl-142.pdf.]

    • Search Google Scholar
    • Export Citation
  • Fleming, Z. L., , P. S. Monks, , and A. J. Manning, 2012: Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res., 104–105, 139, doi:10.1016/j.atmosres.2011.09.009.

    • Search Google Scholar
    • Export Citation
  • Gaiero, D. M., and Coauthors, 2013: Ground/satellite observations and atmospheric modeling of dust storms originated in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives. J. Geophys. Res., 118, 38173831, doi:10.1002/jgrd.50036.

    • Search Google Scholar
    • Export Citation
  • Gasso, S., , and A. F. Stein, 2007: Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys. Res. Lett., 34, L01801, doi:10.1029/2006GL027693.

    • Search Google Scholar
    • Export Citation
  • Gerbig, C., , J. C. Lin, , S. C. Wofsy, , B. C. Daube, , A. E. Andrews, , B. B. Stephens, , P. S. Bakwin, , and C. A. Grainger, 2003: Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J. Geophys. Res., 108, 4757,doi:10.1029/2003JD003770.

    • Search Google Scholar
    • Export Citation
  • Gery, M. W., , G. Z. Whitten, , J. P. Killus, , and M. C. Dodge, 1989: A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res., 94 (D10), 12 925–12 956, doi:10.1029/JD094iD10p12925.

    • Search Google Scholar
    • Export Citation
  • Gifford, F. A., 1961: Use of routine meteorological observations for estimating atmospheric dispersion. Nucl. Saf., 2, 4751.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-214.pdf.]

    • Search Google Scholar
    • Export Citation
  • Han, Y. J., , T. M. Holsen, , P. K. Hopke, , and S. M. Yi, 2005: Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. Environ. Sci. Technol., 39, 17151723, doi:10.1021/es0498540.

    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., , and B. J. B. Stunder, 1993: Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model. Wea. Forecasting, 8, 533–541, doi:10.1175/1520-0434(1993)008<0533:VAFTAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., , A. D. Taylor, , and G. J. Ferber, 1975: A regional-continental scale transport, diffusion, and deposition model. Part I: Trajectory model. Part II: Diffusion-deposition models. Air Resources Laboratories Tech. Memo. ERL ARL-50, 28 pp. [Available online at www.arl.noaa.gov/documents/reports/ARL-50.PDF.]

    • Search Google Scholar
    • Export Citation
  • Hegarty, J., , and Coauthors, 2013: Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. J. Appl. Meteor. Climatol., 52, 26232637, doi:10.1175/JAMC-D-13-0125.1.

    • Search Google Scholar
    • Export Citation
  • Hoke, J. E., , N. A. Phillips, , G. J. DiMego, , J. J. Tuccillo, , and J. G. Sela, 1989: The regional analysis and forecast system of the National Meteorological Center. Wea. Forecasting, 4, 323–334, doi:10.1175/1520-0434(1989)004<0323:TRAAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., , T. Black, , M. Pyle, , E. Rogers, , H.-Y. Chuang, , and G. DiMego, 2005: High resolution applications of the WRF NMM. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 16A.4. [Available online at https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_93724.htm.]

  • Jeong, H., , M. Park, , H. Jeong, , W. Hwang, , E. Kim, , and M. Han, 2013: Radiological risk assessment caused by RDD terrorism in an urban area. Appl. Radiat. Isot., 79, 14, doi:10.1016/j.apradiso.2013.04.018.

    • Search Google Scholar
    • Export Citation
  • Jeong, S., , Y.-K. Hsu, , A. E. Andrews, , L. Bianco, , P. Vaca, , J. M. Wilczak, , and M. L. Fischer, 2013: A multitower measurement network estimate of California’s methane emissions. J. Geophys. Res., 118, 11 339–11 351, doi:10.1002/jgrd.50854.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. M., 1984: A simple model for predicting the ozone concentration of ambient air. Proc. Eighth Int. Clean Air Conf., Melbourne, Victoria, Australia, Clean Air Society of Australia and New Zealand, 715731.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335–342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, D., , B. K. Eder, , A. F. Stein, , G. Grell, , S. E. Peckham, , and J. McHenry, 2005: The New England Air Quality Forecasting Pilot Program: Development of an evaluation protocol and performance benchmark. J. Air Waste Manag. Assoc., 55, 17821796, doi:10.1080/10473289.2005.10464775.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., , and C. A. Clayson, 2000: Small Scale Processes in Geophysical Fluid Flows. International Geophysics, Vol. 67, Academic Press, 750 pp.

    • Search Google Scholar
    • Export Citation
  • Karaca, F., , and F. Camci, 2010: Distant source contributions to PM10 profile evaluated by SOM based cluster analysis of air mass trajectory sets. Atmos. Environ., 44, 892899, doi:10.1016/j.atmosenv.2009.12.006.

    • Search Google Scholar
    • Export Citation
  • Kinoshita, N., , and Coauthors, 2011: Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci. USA, 108, 19 526–19 529, doi:10.1073/pnas.1111724108.

    • Search Google Scholar
    • Export Citation
  • Kinser, A. M., 2001: Simulating wet deposition of radiocesium from the Chernobyl accident. M.S. thesis, Graduate School of Engineering and Management, Air Force Institute of Technology, 108 pp. [Available online at http://www.dtic.mil/get-tr-doc/pdf?AD=ADA392534.]

    • Search Google Scholar
    • Export Citation
  • Kort, E. A., , and Coauthors, 2008: Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys. Res. Lett., 35, L18808,doi:10.1029/2008GL034031.

    • Search Google Scholar
    • Export Citation
  • Leadbetter, S. L., , M. C. Hort, , A. R. Jones, , H. N. Webster, , and R. R. Draxler, 2015: Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME. J. Environ. Radioact., 139, 200211, doi:10.1016/j.jenvrad.2014.03.018.

    • Search Google Scholar
    • Export Citation
  • Lee, J. A., , L. J. Peltier, , S. E. Haupt, , J. C. Wyngaard, , D. R. Stauffer, , and A. Deng, 2009: Improving SCIPUFF dispersion forecasts with NWP ensembles. J. Appl. Meteor. Climatol., 48, 23052319, doi:10.1175/2009JAMC2171.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., , C. Gerbig, , S. C. Wofsy, , A. E. Andrews, , B. C. Daube, , K. J. Davis, , and C. A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res., 108, 4493, doi:10.1029/2002JD003161.

    • Search Google Scholar
    • Export Citation
  • Machta, L., 1992: Finding the site of the first Soviet nuclear test in 1949. Bull. Amer. Meteor. Soc., 73, 1797–1806, doi:10.1175/1520-0477(1992)073<1797:FTSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markou, M. T., , and P. Kassomenos, 2010: Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmos. Res., 98, 438457, doi:10.1016/j.atmosres.2010.08.006.

    • Search Google Scholar
    • Export Citation
  • Mastin, L. G., and Coauthors, 2009: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res., 186, 1021, doi:10.1016/j.jvolgeores.2009.01.008.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Moroz, B. E., , H. L. Beck, , A. Bouville, , and S. L. Steven, 2010: Predictions of dispersion and deposition of fallout from nuclear testing using the NOAA-Hysplit Meteorological Model. Health Phys., 99, 252269, doi:10.1097/HP.0b013e3181b43697.

    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., , J. Eluszkiewicz, , S. C. Wofsy, , J. C. Lin, , C. Gerbig, , M. Longo, , and S. Freitas, 2010: Coupled Weather Research and Forecasting–Stochastic Time-Inverted Lagrangian Transport (WRF–STILT) model. Meteor. Atmos. Phys., 107, 5164, doi:10.1007/s00703-010-0068-x.

    • Search Google Scholar
    • Export Citation
  • Ngan, F., , A. Stein, , and R. Draxler, 2015: Inline coupling of WRF–HYSPLIT: Model development and evaluation using tracer experiments. J. Appl. Meteor. Climatol., 54, 11621176, doi:10.1175/JAMC-D-14-0247.1.

    • Search Google Scholar
    • Export Citation
  • Pasken, R., , and J. A. Pietrowicz, 2005: Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmos. Environ., 39, 76897701, doi:10.1016/j.atmosenv.2005.04.043.

    • Search Google Scholar
    • Export Citation
  • Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag., 90, 3349.

  • Philips, N. A., 1979: The nested grid model. NOAA/National Weather Service Tech. Rep. NWS-22, 80 pp.

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 (1–4), 6991, doi:10.1007/BF01025401.

    • Search Google Scholar
    • Export Citation
  • Potempski, S., and Coauthors, 2008: Multi-model ensemble analysis of the ETEX-2 experiment. Atmos. Environ., 42, 72507265, doi:10.1016/j.atmosenv.2008.07.027.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., , R. R. Draxler, , and R. G. de Pena, 1992: Modeling sulfur concentrations and depositions in the United States during ANATEX. Atmos. Environ., 26A, 7393, doi:10.1016/0960-1686(92)90262-J.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., , R. R. Draxler, , and R. G. de Pena, 1993a: The use of model-derived and observed precipitation in long-term sulfur concentration and deposition modeling. Atmos. Environ., 27A, 20172037, doi:10.1016/0960-1686(93)90275-4.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., , J. McQueen, , and R. R. Draxler, 1993b: Real-Time Environmental Applications and Display sYstem (READY). Proc. Topical Meeting on Environmental Transport and Dosimetry, Charleston, SC, American Nuclear Society, 113116.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., and Coauthors, 2009: Description and verification of the NOAA Smoke Forecasting System: The 2007 fire season. Wea. Forecasting, 24, 361378, doi:10.1175/2008WAF2222165.1.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., , F. Ngan, , and R. R. Draxler, 2014: Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model. J. Environ. Radioact., 136, 4155, doi:10.1016/j.jenvrad.2014.05.006.

    • Search Google Scholar
    • Export Citation
  • Ryaboshapko, A., and Coauthors, 2007a: Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements. Sci. Total Environ., 376, 228240, doi:10.1016/j.scitotenv.2007.01.072.

    • Search Google Scholar
    • Export Citation
  • Ryaboshapko, A., and Coauthors, 2007b: Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets. Sci. Total Environ., 377, 319333, doi:10.1016/j.scitotenv.2007.01.071.

    • Search Google Scholar
    • Export Citation
  • Schaum, J., and Coauthors, 2010: Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deep Water Horizon Gulf of Mexico spill. Environ. Sci. Technol., 44, 93839389, doi:10.1021/es103559w.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

    • Search Google Scholar
    • Export Citation
  • Slade, D. H., 1966: Estimates of dispersion from pollutant releases of a few seconds to 8 hours in duration. Air Resources Laboratories Tech. Note 39-ARL-3, 26 pp. [Available online at www.arl.noaa.gov/documents/reports/TN-39-ARL-3.PDF.]

    • Search Google Scholar
    • Export Citation
  • Slade, D. H., Ed., 1968: Meteorology and atomic energy 1968. Air Resources Laboratory, ESSA, for USAEC Division of Technical Information, 445pp.

    • Search Google Scholar
    • Export Citation
  • Smith, C. D., 1950: The widespread smoke layer from Canadian forest fires during late September 1950. Mon. Wea. Rev., 78, 180–184, doi:10.1175/1520-0493(1950)078<0180:TWSLFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solazzo, E., , A. Riccio, , I. Kioutsioukis, , and S. Galmarini, 2013: Pauci ex tanto numero: Reduce redundancy in multi-model ensembles. Atmos. Chem. Phys., 13, 83158333, doi:10.5194/acp-13-8315-2013.

    • Search Google Scholar
    • Export Citation
  • Solazzo, E., , R. Venkatesan, , R. Baskaran, , V. Rajagopal, , and B. Venkatraman, 2012: Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmos. Environ., 61, 6684, doi:10.1016/j.atmosenv.2012.06.082.

    • Search Google Scholar
    • Export Citation
  • Start, G. E., , and L. L. Wendell, 1974: Regional effluent dispersion calculations considering spatial and temporal meteorological variations. Air Resources Laboratories Tech. Memo. ERL TM-ARL-44, 63pp. [Available online at www.arl.noaa.gov/documents/reports/ARL-44.PDF.]

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., , D. Lamb, , and R. R. Draxler, 2000: Incorporation of detailed chemistry into a three-dimensional Lagrangian–Eulerian hybrid model: Application to regional tropospheric ozone. Atmos. Environ., 34, 43614372, doi:10.1016/S1352-2310(00)00204-1.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., , V. Isakov, , J. Godowitch, , and R. R. Draxler, 2007: A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmos. Environ., 41, 94109426, doi:10.1016/j.atmosenv.2007.09.004.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., , G. D. Rolph, , R. R. Draxler, , B. Stunder, , and M. Ruminski, 2009: Verification of the NOAA Smoke Forecasting System: Model sensitivity to the injection height. Wea. Forecasting, 24, 379394, doi:10.1175/2008WAF2222166.1.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., , Y. Wang, , J. D. de la Rosa, , A. M. Sanchez de la Campa, , N. Castell, , and R. R. Draxler, 2011: Modeling PM10 originated from dust intrusions in the southern Iberian Peninsula using HYSPLIT. Wea. Forecasting, 26, 236242, doi:10.1175/WAF-D-10-05044.1.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., , F. Ngan, , R. R. Draxler, , and T. Chai, 2015: Potential use of transport and dispersion model ensembles for forecasting applications. Wea. Forecasting, 30, 639655, doi:10.1175/WAF-D-14-00153.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., , S. Eckhardt, , C. Forster, , P. James, , N. Spichtinger, , and P. Seibert, 2002: A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements. Atmos. Environ., 36, 46354648, doi:10.1016/S1352-2310(02)00416-8.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., , C. Forster, , A. Frank, , P. Seibert, , and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Stunder, B. J. B., 1996: An assessment of the quality of forecast trajectories. J. Appl. Meteor., 35, 1319–1331, doi:10.1175/1520-0450(1996)035<1319:AAOTQO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stunder, B. J. B., , J. L. Heffter, , and R. R. Draxler, 2007: Airborne volcanic ash forecast area reliability. Wea. Forecasting, 22, 11321139, doi:10.1175/WAF1042.1.

    • Search Google Scholar
    • Export Citation
  • Tupper, A., , J. Davey, , P. Stewart, , B. Stunder, , R. Servranckx, , and F. Prata, 2006: Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002/03. Aust. Meteor. Mag., 55, 289299.

    • Search Google Scholar
    • Export Citation
  • Wain, A. G., , S. Lee, , G. A. Mills, , G. D. Hess, , M. E. Cope, , and N. Tindale, 2006: Meteorological overview and verification of HYSPLIT and AAQFS dust forecasts for the duststorm of 22-24 October 2002. Aust. Meteor. Mag., 55, 3546.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , A. F. Stein, , R. R. Draxler, , J. D. de la Rosa, , and X. Zhang, 2011: Global sand and dust storms in 2008: Observation and HYSPLIT model verification. Atmos. Environ., 45, 63686381, doi:10.1016/j.atmosenv.2011.08.035.

    • Search Google Scholar
    • Export Citation
  • Webley, P. W., , B. J. B. Stunder, , and K. G. Dean, 2009: Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models—A case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska. J. Volcanol. Geotherm. Res., 186, 108119, doi:10.1016/j.jvolgeores.2009.02.012.

    • Search Google Scholar
    • Export Citation
  • Wen, D., , J. C. Lin, , D. B. Millet, , A. Stein, , and R. Draxler, 2012: A backward-time stochastic Lagrangian air quality model. Atmos. Environ., 54, 373386, doi:10.1016/j.atmosenv.2012.02.042.

    • Search Google Scholar
    • Export Citation
  • Wendell, L. L., 1972: Mesoscale wind fields and transport estimates determined from a network of wind towers. Mon. Wea. Rev., 100, 565–578, doi:10.1175/1520-0493(1972)100<0565:MWFATE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witham, C. S., , M. C. Hort, , R. Potts, , R. Servranckx, , P. Husson, , and F. Bonnardot, 2007: Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption. Meteor. Appl., 14, 2738, doi:10.1002/met.3.

    • Search Google Scholar
    • Export Citation
  • Yerramilli, A., , and Coauthors, 2012: An integrated WRF/HYSPLIT modeling approach for the assessment of PM2.5 source regions over the Mississippi Gulf Coast region. Air Qual. Atmos. Health, 5, 401412, doi:10.1007/s11869-010-0132-1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , A. E. Andrews, , L. Bianco, , J. Eluszkiewicz, , A. Hirsch, , C. MacDonald, , T. Nehrkorn, , and M. L. Fischer, 2009: Atmospheric inverse estimates of methane emissions from Central California. J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7023 7023 6430
PDF Downloads 1384 1384 798

NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System

View More View Less
  • 1 NOAA/Air Resources Laboratory, College Park, Maryland
  • 2 NOAA/Air Resources Laboratory, and Cooperative Institute for Climate and Satellites, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

Publisher’s Note: This article was modified on 5 February 2016 to correct the empirical formula for sulfate.

CORRESPONDING AUTHOR: Ariel F. Stein, NOAA/Air Resources Laboratory, R/ARL–NCWCP–Room 4205, 5830 University Research Court, College Park, MD 20740, E-mail: ariel.stein@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-14-00110.2)

Abstract

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

Publisher’s Note: This article was modified on 5 February 2016 to correct the empirical formula for sulfate.

CORRESPONDING AUTHOR: Ariel F. Stein, NOAA/Air Resources Laboratory, R/ARL–NCWCP–Room 4205, 5830 University Research Court, College Park, MD 20740, E-mail: ariel.stein@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-14-00110.2)

Supplementary Materials

    • Supplemental Materials (PDF 761.36 KB)
Save