Challenges in Quantifying Changes in the Global Water Cycle

Gabriele C. Hegerl School of GeoSciences, University of Edinburgh, Grant Institute, United Kingdom

Search for other papers by Gabriele C. Hegerl in
Current site
Google Scholar
PubMed
Close
,
Emily Black Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Emily Black in
Current site
Google Scholar
PubMed
Close
,
Richard P. Allan Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Richard P. Allan in
Current site
Google Scholar
PubMed
Close
,
William J. Ingram Met Office Hadley Centre, Exeter, and Department of Physics, Oxford University, Oxford, United Kingdom

Search for other papers by William J. Ingram in
Current site
Google Scholar
PubMed
Close
,
Debbie Polson School of GeoSciences, University of Edinburgh, Grant Institute, United Kingdom

Search for other papers by Debbie Polson in
Current site
Google Scholar
PubMed
Close
,
Kevin E. Trenberth National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
,
Robin S. Chadwick Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Robin S. Chadwick in
Current site
Google Scholar
PubMed
Close
,
Phillip A. Arkin Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Phillip A. Arkin in
Current site
Google Scholar
PubMed
Close
,
Beena Balan Sarojini Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Beena Balan Sarojini in
Current site
Google Scholar
PubMed
Close
,
Andreas Becker Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Andreas Becker in
Current site
Google Scholar
PubMed
Close
,
Aiguo Dai Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
,
Paul J. Durack Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, and Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia

Search for other papers by Paul J. Durack in
Current site
Google Scholar
PubMed
Close
,
David Easterling NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by David Easterling in
Current site
Google Scholar
PubMed
Close
,
Hayley J. Fowler School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Hayley J. Fowler in
Current site
Google Scholar
PubMed
Close
,
Elizabeth J. Kendon Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Elizabeth J. Kendon in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
,
Chunlei Liu Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Chunlei Liu in
Current site
Google Scholar
PubMed
Close
,
Robert Marsh Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by Robert Marsh in
Current site
Google Scholar
PubMed
Close
,
Mark New University of Cape Town, Rondebosch, Cape Town, South Africa

Search for other papers by Mark New in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Osborn Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norfolk, United Kingdom

Search for other papers by Timothy J. Osborn in
Current site
Google Scholar
PubMed
Close
,
Nikolaos Skliris Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by Nikolaos Skliris in
Current site
Google Scholar
PubMed
Close
,
Peter A. Stott Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peter A. Stott in
Current site
Google Scholar
PubMed
Close
,
Pier-Luigi Vidale Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Pier-Luigi Vidale in
Current site
Google Scholar
PubMed
Close
,
Susan E. Wijffels Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia

Search for other papers by Susan E. Wijffels in
Current site
Google Scholar
PubMed
Close
,
Laura J. Wilcox Department of Meteorology, University of Reading/National Centre for Atmospheric Science Climate, Reading, United Kingdom

Search for other papers by Laura J. Wilcox in
Current site
Google Scholar
PubMed
Close
,
Kate M. Willett Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Kate M. Willett in
Current site
Google Scholar
PubMed
Close
, and
Xuebin Zhang Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Xuebin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time series over land, but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols and because of the large climate variability presently limits confidence in attribution of observed changes.

Publisher’s Note: This article was modified on 14 August 2015 to correct latitudinal labels on the x-axis in Fig. 3.

The National Center For Atmospheric Research is sponsored by the National Science Foundation.

CORRESPONDING AUTHOR: Gabriele Hegerl, GeoSciences, Grant Institute, Kings Buildings, James Hutton Rd, Edinburgh EH9 3FE, United Kingdom, E-mail: gabi.hegerl@ed.ac.uk

A supplement to this article is available online (10.1175/BAMS-D-13-00212.2)

Abstract

Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time series over land, but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols and because of the large climate variability presently limits confidence in attribution of observed changes.

Publisher’s Note: This article was modified on 14 August 2015 to correct latitudinal labels on the x-axis in Fig. 3.

The National Center For Atmospheric Research is sponsored by the National Science Foundation.

CORRESPONDING AUTHOR: Gabriele Hegerl, GeoSciences, Grant Institute, Kings Buildings, James Hutton Rd, Edinburgh EH9 3FE, United Kingdom, E-mail: gabi.hegerl@ed.ac.uk

A supplement to this article is available online (10.1175/BAMS-D-13-00212.2)

Supplementary Materials

    • Supplemental Materials (PDF 1.15 MB)
Save
  • Ackerley, D., B. B. B. Booth, S. H. E. Knight, E. J. Highwood, D. J. Frame, M. R. Allen, and D. P. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 49995014, doi:10.1175/JCLI-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R., P. Brohan, G. P. Compo, R. Stone, J. Luterbacher, and S. Bronnimann, 2011: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative. Bull. Amer. Meteor. Soc., 92, 14211425, doi:10.1175/2011BAMS3218.1

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., 2012: Regime dependent changes in global precipitation. Climate Dyn., 39, 827840, doi:10.1007/s00382-011-1134-x.

  • Allan, R. P., 2014: Dichotomy of drought and deluge. Nat. Geosci., 7, 700701, doi:10.1038/ngeo2243.

  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350355, doi:10.1038/nature11097.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and J.-H. Jung, 2011: Multiscale modeling of the moist convective atmosphere: A review. Atmos. Res., 102, 263285, doi:10.1016/j.atmosres.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., and Coauthors, 2013: A global assessment of the effects of climate policy on the impacts of climate change. Nat. Climate Change, 3, 512519, doi:10.1038/nclimate1793.

    • Search Google Scholar
    • Export Citation
  • Balan Sarojini, B., P. A. Stott, E. Black, and D. Polson, 2012: Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. Geophys. Res. Lett., 39, L21706, doi:10.1029/2012GL053373.

    • Search Google Scholar
    • Export Citation
  • Beck, C., J. Grieser, and B. Rudolf, 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate Status Rep. 2004, 181–190. [Available online at www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/VASClimO/pdf__28__precipitation,templateId=raw,property=publicationFile.pdf/pdf_28_precipitation.pdf.]

  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data Discuss., 5, 7199, doi:10.5194/essd-5-71-201.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, S. Koumoutsaris, M. Zahn, and N. Keenlyside, 2011: The changing atmospheric water cycle in polar regions in a warmer climate. Tellus, 63A, 907920, doi:10.1111/j.1600-0870.2011.00534.x.

    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation response to higher temperatures. Nat. Geosci., 6, 181185, doi:10.1038/ngeo1731.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, doi:10.1175/2008BAMS2639.1.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, doi:10.1002/joc.2059.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867952.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, doi:10.1038/nature13259.

    • Search Google Scholar
    • Export Citation
  • Blyth, E. M., D. B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, M. Best, and S. Sitch, 2010: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geosci. Model Dev., 3, 18291859, doi:10.5194/gmdd-3-1829-2010.

    • Search Google Scholar
    • Export Citation
  • Bony, B., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R. S., I. A. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C. Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555, doi:10.1175/2010JCLI4065.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, doi:10.1038/ngeo1744.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 636–11 641, doi:10.1073/pnas.1409659111.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011a: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2011b: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013a: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013b: The influence of the inter-decadal Pacific Oscillation on U.S. precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948–2004. J. Climate, 22, 27732791, doi:10.1175/2008JCLI2592.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Demory, M.-E., P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, doi:10.1007/s00382-013-1924-4.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, doi:10.1002/jgrd.50150.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, E. J. Highwood, and L. J. Wilcox, 2014: The impacts of European and Asian anthropogenic sulfur dioxide emissions on Sahel rainfall. J. Climate, 27, 70007017, doi:10.1175/JCLI-D-13-00769.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950–2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and T. P. Boyer, 2013: Long-term salinity changes and implications for the global water cycle. Ocean Circulation and Climate—A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Elsevier, 727757, doi:10.1016/B978-0-12-391851-2.00028-3.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.