• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Barrett, A. I., R. J. Hogan, and E. J. O’Connor, 2009: Evaluating forecasts of the evolution of the cloudy boundary layer using diurnal composites of radar and lidar observations. Geophys. Res. Lett., 36, L17811, 10.1029/2009GL038919.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, doi:10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112, D10108, 10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Bowen, E. G., 1950: The formation of rain by coalescence. Aust. J. Sci. Res., 3A, 193213.

  • Brenguier, J.-L., F. Burnet, and O. Geoffroy, 2011: Cloud optical thickness and liquid water path—Does the k coefficient vary with droplet concentration? Atmos. Chem. Phys., 11, 97719786, doi:10.5194/acp-11-9771-2011.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multi-frequency, multi-angle microwave radiometry. IEEE Trans. Geosci. Remote Sens., 45, 21952201, doi:10.1109/TGRS.2006.888434.

    • Search Google Scholar
    • Export Citation
  • Dai, A., J. Wang, R. H. Ware, and T. Van Hove, 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107 (D10), doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Ebell, K., E. Orlandi, A. Hünerbein, U. Löhnert, and S. Crewell, 2013: Combining ground-based with satellite-based measurements in the atmospheric state retrieval: Assessment of the information content. J. Geophys. Res. Atmos., 118, 69406956, doi:10.1002/jgrd.50548.

    • Search Google Scholar
    • Export Citation
  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey, 2010: Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech., 3, 17631770, doi:10.5194/amt-3-1763-2010.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in the evaluation of a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111, D01202, doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Karstens, U., C. Simmer, and E. Ruprecht, 1994: Remote sensing of cloud liquid water. Meteor. Atmos. Phys., 54, 157171, doi:10.1007/BF01030057.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer (AERI). Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, doi:10.1175/JTECH-1662.1.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer (AERI). Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, E. P. Luke, K. L. Johnson, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214, doi:10.1175/JTECH2033.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., J. Rémillard, E. Luke, and W. Szyrmer, 2011a: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res., 116, D13201, 10.1029/2010JD015237.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., W. Szyrmer, J. Rémillard, and E. Luke, 2011b: Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, 10.1029/2010JD015238.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and S. Crewell, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci., 38, 8041, 10.1029/2002RS002654.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and O. Maier, 2012: Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5, 11211134, doi:10.5194/amt-5-1121-2012.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., U., S. Crewell, O. Krasnov, E. O’Connor, and H. Russchenberg, 2008: Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. J. Atmos. Oceanic Technol., 25, 12511266, doi:10.1175/2007JTECHA961.1.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, doi:10.1175/2008JAMC2060.1.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., and E. G. Patton, 2014: Surface energy balance and buoyancy response to shallow cumulus shading. J. Atmos. Sci., 71, 665682, doi:10.1175/JAS-D-13-0145.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., J. M. Sabburg, J. Calbó, and D. Pagès, 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633652, doi:10.1175/JTECH1875.1.

    • Search Google Scholar
    • Export Citation
  • Mann, J. A. L., J. C. Chiu, R. J. Hogan, E. J. O’Connor, T. S. L’Ecuyer, T. H. M. Stein, and A. Jefferson, 2014: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. J. Geophys. Res. Atmos., 119, 41364148, doi:10.1002/2013JD021339.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Melchionna, S., M. Bauer, and G. Peters, 2008: A new algorithm for the extraction of cloud parameters using multipeak analysis of cloud radar data—First application and preliminary results. Meteor. Z., 17, 613620, doi:10.1127/0941-2948/2008/0322.

    • Search Google Scholar
    • Export Citation
  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, doi:10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at a permanent meteorological supersite. Bull. Amer. Meteor. Soc., 93, 13891400, doi:10.1175/BAMS-D-11-00162.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, doi:10.1175/JAM-2181.1.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., J. L. Brenguier and F. Burnet, F., 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55, 1533, doi:10.1016/S0169-8095(00)00054-5.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Information aspects. Inverse Methods for Atmospheric Sounding: Theory and Practice, F. W. Taylor, Ed., Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 1341.

    • Search Google Scholar
    • Export Citation
  • Rose, T., S. Crewell, U. Löhnert, and C. Simmer, 2005: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res., 75, 183200, doi:10.1016/j.atmosres.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Schween, J. H., S. Crewell, and U. Löhnert, 2011: Horizontal-humidity gradient from one single-scanning microwave radiometer. IEEE Geosci. Remote Sens. Lett., 8, 336340, doi:10.1109/LGRS.2010.2072981.

    • Search Google Scholar
    • Export Citation
  • Schween, J. H., A. Hirsikko, U. Löhnert, and S. Crewell, 2014: Mixing layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech. Discuss., 7, 42754319, doi:10.5194/amtd-7-4275-2014.

    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer, 2014: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. Mon. Wea. Rev., 142, 34663483, doi:10.1175/MWR-D-14-00029.1.

    • Search Google Scholar
    • Export Citation
  • Small, J. D., and P. Y. Chuang, 2008: New observations of precipitation initiation in warm cumulus clouds. J. Atmos. Sci., 65, 29722982, doi:10.1175/2008JAS2600.1.

    • Search Google Scholar
    • Export Citation
  • Small, J. D., and P. Y. Chuang, and H. H. Jonsson, 2013: Microphysical imprint of entrainment in warm cumulus. Tellus, 65B, 19922, 10.3402/tellusb.v65i0.19922.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, doi:10.1126/science.1237554.

  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., S. Kollet, and C. Simmer, 2010: Patterns in soil–vegetation–atmosphere systems: Monitoring, modeling, and data assimilation. Vadose Zone J., 9, 821827, doi:10.2136/vzj2010.0122.

    • Search Google Scholar
    • Export Citation
  • Walser, A., D. Lüthi, and C. Schär, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560577, doi:10.1175/1520-0493(2004)132<0560:POPIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weitkamp, C., 2005: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer Series in Optical Sciences, Vol. 102, Springer, 460 pp.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, doi:10.1175/2009JAS3072.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and Coauthors, 2005: Modeling springtime shallow frontal clouds with cloud-resolving and single-column models. J. Geophys. Res., 110, D15S04, 10.1029/2004JD005153.

    • Search Google Scholar
    • Export Citation
  • Zacharias, S., M. Reyers, J. G. Pinto, J. H. Schween, S. Crewell, and M. Kerschgens, 2012: Heat and moisture budgets from airborne measurements and high resolution model simulations. Meteor. Atmos. Phys., 117, 4761, doi:10.1007/s00703-012-0188-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, 10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 3 3 3

JOYCE: Jülich Observatory for Cloud Evolution

View More View Less
  • 1 Institute for Geophysics am Meteorology, University of Cologne, Cologne, Germany
  • | 2 Institut für Energie- und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 3 Geschäftsbereich Sicherheit und Strahlenschutz (S-UM), Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 4 Department of Meteorology, University of Reading, Reading, United Kingdom, and Finnish Meteorological Institute, Helsinki, Finland
  • | 5 Meteorological Institute, University of Bonn, Bonn, Germany
  • | 6 Institut für Energie- und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 7 Institute for Geophysics am Meteorology, University of Cologne, Cologne, Germany
Restricted access

Abstract

The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.

CORRESPONDING AUTHOR: Dr. Ulrich Löhnert, Institute for Geophysics and Meteorology, Pohligstraße 3, 50969 Köln, Germany, E-mail: loehnert@meteo.uni-koeln.de

Abstract

The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.

CORRESPONDING AUTHOR: Dr. Ulrich Löhnert, Institute for Geophysics and Meteorology, Pohligstraße 3, 50969 Köln, Germany, E-mail: loehnert@meteo.uni-koeln.de
Save