The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation

A. J. Illingworth Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by A. J. Illingworth in
Current site
Google Scholar
PubMed
Close
,
H. W. Barker Environment Canada, Toronto, Ontario, Canada

Search for other papers by H. W. Barker in
Current site
Google Scholar
PubMed
Close
,
A. Beljaars European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by A. Beljaars in
Current site
Google Scholar
PubMed
Close
,
M. Ceccaldi LATMOS/UVSQ/ISPL/CNRS, Guyancourt, France

Search for other papers by M. Ceccaldi in
Current site
Google Scholar
PubMed
Close
,
H. Chepfer Laboratoire de Meteorologie Dynamique, Paris, France

Search for other papers by H. Chepfer in
Current site
Google Scholar
PubMed
Close
,
N. Clerbaux Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by N. Clerbaux in
Current site
Google Scholar
PubMed
Close
,
J. Cole Environment Canada, Toronto, Ontario, Canada

Search for other papers by J. Cole in
Current site
Google Scholar
PubMed
Close
,
J. Delanoë LATMOS/UVSQ/ISPL/CNRS, Guyancourt, France

Search for other papers by J. Delanoë in
Current site
Google Scholar
PubMed
Close
,
C. Domenech Institute for Space Sciences, Free University of Berlin, Berlin, Germany

Search for other papers by C. Domenech in
Current site
Google Scholar
PubMed
Close
,
D. P. Donovan Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by D. P. Donovan in
Current site
Google Scholar
PubMed
Close
,
S. Fukuda Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by S. Fukuda in
Current site
Google Scholar
PubMed
Close
,
M. Hirakata Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by M. Hirakata in
Current site
Google Scholar
PubMed
Close
,
R. J. Hogan Department of Meteorology, University of Reading, and European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by R. J. Hogan in
Current site
Google Scholar
PubMed
Close
,
A. Huenerbein Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by A. Huenerbein in
Current site
Google Scholar
PubMed
Close
,
P. Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by P. Kollias in
Current site
Google Scholar
PubMed
Close
,
T. Kubota Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by T. Kubota in
Current site
Google Scholar
PubMed
Close
,
T. Nakajima Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

Search for other papers by T. Nakajima in
Current site
Google Scholar
PubMed
Close
,
T. Y. Nakajima Research and Information Center (TRIC), Tokai University, Tokyo, Japan

Search for other papers by T. Y. Nakajima in
Current site
Google Scholar
PubMed
Close
,
T. Nishizawa Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by T. Nishizawa in
Current site
Google Scholar
PubMed
Close
,
Y. Ohno Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, Tokyo, Japan

Search for other papers by Y. Ohno in
Current site
Google Scholar
PubMed
Close
,
H. Okamoto Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by H. Okamoto in
Current site
Google Scholar
PubMed
Close
,
R. Oki Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

Search for other papers by R. Oki in
Current site
Google Scholar
PubMed
Close
,
K. Sato Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by K. Sato in
Current site
Google Scholar
PubMed
Close
,
M. Satoh Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

Search for other papers by M. Satoh in
Current site
Google Scholar
PubMed
Close
,
M. W. Shephard Environment Canada, Toronto, Ontario, Canada

Search for other papers by M. W. Shephard in
Current site
Google Scholar
PubMed
Close
,
A. Velázquez-Blázquez Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by A. Velázquez-Blázquez in
Current site
Google Scholar
PubMed
Close
,
U. Wandinger Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by U. Wandinger in
Current site
Google Scholar
PubMed
Close
,
T. Wehr ESA, ESTEC, Noordwijk, Netherlands

Search for other papers by T. Wehr in
Current site
Google Scholar
PubMed
Close
, and
G.-J. van Zadelhoff Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by G.-J. van Zadelhoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.

CORRESPONDING AUTHOR: Anthony J. Illingworth, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom, E-mail: a.j.illingworth@reading.ac.uk

Abstract

The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.

CORRESPONDING AUTHOR: Anthony J. Illingworth, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom, E-mail: a.j.illingworth@reading.ac.uk
Save
  • Amiridis, V., and Coauthors, 2013: Optimizing CALIPSO Saharan dust retrievals. Atmos. Chem. Phys., 13, 12 089–12 106, doi:10.5194/acp-13-12089-2013.

    • Search Google Scholar
    • Export Citation
  • Baars, H., and Coauthors, 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, doi:10.1029/2012JD018338.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. Donovan, and R. Hogan, 2011: A 3D cloud construction algorithm for the EarthCARE satellite mission. Quart. J. Roy. Meteor. Soc., 137, 10421058, doi:10.1002/qj.824.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., S. Kato, and T. Wehr, 2012: Computation of solar radiative fluxes by 1D and 3D methods using cloudy atmospheres inferred from A-train satellite data. Surv. Geophys., 33, 657676, doi:10.1007/s10712-011-9164-9.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and S. Tanelli, 2011: Doppler multiple scattering simulator. IEEE Trans. Geosci. Remote Sens., 49, 442450, doi:10.1109/TGRS.2010.2052818.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and P. Kollias, 2014: Using ice clouds for mitigating the EarthCARE Doppler radar mispointing. IEEE Trans. Geosci. Remote Sens., 53, 20792085, doi:10.1109/TGRS.2014.2353219.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and B. Stevens, 2012: Clouds, circulation and climate sensitivity: How the interactions between clouds, greenhouse gases and aerosols affect temperature and precipitation in a changing climate. WCRP Grand Challenge White Paper 4, 7 pp. [Available online at www.wcrp-climate.org/images/documents/grand_challenges/GC4_Clouds_14nov2012.pdf.]

  • Burton, S. P., and Coauthors, 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 7398, doi:10.5194/amt-5-73-2012.

    • Search Google Scholar
    • Export Citation
  • Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its validation using airborne radar-lidar observations. J. Geophys. Res. Atmos., 118, 79627981, doi:10.1002/jgrd.50579.

    • Search Google Scholar
    • Export Citation
  • Clerbaux, N., S. Dewitte, L. Gonzalez, C. Bertrand, B. Nicula, and A. Ipe, 2003: Outgoing longwave flux estimation: Improvement of angular modelling using spectral information. Remote Sens. Environ., 85, 389395, doi:10.1016/S0034-4257(03)00015-4.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Domenech, C., and T. Wehr, 2011: Use of artificial neural networks to retrieve TOA SW radiative fluxes for the EarthCARE mission. IEEE Trans. Geosci. Remote Sens., 49, 18391849, doi:10.1109/TGRS.2010.2102768.

    • Search Google Scholar
    • Export Citation
  • Domenech, C., T. Wehr, and J. Fischer, 2011: Toward an Earth Clouds, Aerosols and Radiation Explore (EarthCARE) thermal flux determination: Evaluation using Clouds and the Earth’s Radiant Energy System (CERES) true along-track data. J. Geophys. Res., 116, D06115, doi:10.1029/2010JD015212.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and Coauthors, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 2. Comparison with IR radiometer and in situ measurements in ice clouds. J. Geophys. Res., 106, 27 449–27 464, doi:10.1029/2001JD900241.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Durand, Y., A. Hélière, J.-L. Bézy, and R. Meynart, 2007: The ESA EarthCARE mission: Results of the ATLID instrument pre-developments. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, U. N. Singh and G. Pappalardo, International Society for Optical Engineering (SPIE Proceedings, Vol. 6750), 675015, doi:10.1117/12.737932.

  • Fu, Q., and K.-N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groß, S. V., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner, 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus, 63B, 706724, doi:10.1111/j.1600-0889.2011.00556.x.

    • Search Google Scholar
    • Export Citation
  • Groß, S. V., V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Geiß, and F. Schnell, 2012: Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atmos. Environ., 48, 8596, doi:10.1016/j.atmosenv.2011.06.017.

    • Search Google Scholar
    • Export Citation
  • Hagihara, Y., H. Okamoto, and R. Yoshida, 2010: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution. J. Geophys. Res., 115, D00H33, doi:10.1029/2009JD012344.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res., 118, 72737292, doi:10.1002/jgrd.50564.

    • Search Google Scholar
    • Export Citation
  • Higurashi, A., T. Nakajima, B. N. Holben, A. Smirnov, R. Frouin, and B. Chatenet, 2000: A study of global aerosol optical climatology with two-channel AVHRR remote sensing. J. Climate, 13, 20112027, doi:10.1175/1520-0442(2000)013<2011:ASOGAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2008: Fast lidar and radar multiple-scattering models. Part I: Small-angle scattering using the photon variance–covariance method. J. Atmos. Sci., 65, 36213635, doi:10.1175/2008JAS2642.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Horie, H., Y. Ohno, K. Sato, K. Nakagawa, and N. Takahashi, 2012: Doppler velocity calibration study for cloud profiling radar on EarthCARE. Proc. IGARSS 2012, Munich, Germany, IEEE, 4629–4632, doi:10.1109/IGARSS.2012.6350434.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 129.

  • Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res., 114, D07206, doi:10.1029/2008JD010710.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al. Eds., Oxford University Press, 327–345.

  • Janisková, M., P. Lopez, and P. Bauer, 2012: Experimental 1D + 4D-Var assimilation of CloudSat observations. Quart. J. Roy. Meteor. Soc., 138, 11961220, doi:10.1002/qj.988.

    • Search Google Scholar
    • Export Citation
  • Kanitz, T., A. Ansmann, R. Engelmann, and D. Althausen, 2013: North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos., 118, 26432655, doi:10.1002/jgrd.50273.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and N. G. Loeb, 2005: Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res., 110, D07202, doi:10.1029/2004JD005308.

    • Search Google Scholar
    • Export Citation
  • Koffi, B., and Coauthors, 2012: Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. J. Geophys. Res., 117, D10201, doi:10.1029/2011JD016858.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., S. Tanelli, A. Battaglia, and A. Tatarevic, 2014: Evaluation of EarthCARE cloud profiling radar Doppler velocity measurements in particle sedimentation regimes. J. Atmos. Oceanic Technol., 31, 366386, doi:10.1175/JTECH-D-11-00202.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., T. S. L’Ecuyer, and G. L. Stephens, 2011: Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J. Appl. Meteor. Climatol., 50, 419432, doi:10.1175/2010JAMC2494.1.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272–285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, doi:10.1029/2007JD009766.

  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, doi:10.1175/JTECH1712.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett., 37, L09804, doi:10.1029/2010GL042904.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S., 2007: Potential for attenuation-based estimates of rainfall rate from CloudSat. Geophys. Res. Lett., 34, L05817, doi:10.1029/2006GL029161.

    • Search Google Scholar
    • Export Citation
  • Müller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, 2007: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112, D16202, doi:10.1029/2006JD008292.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Coauthors, 2007: Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res., 112, D24S91, doi:10.1029/2007JD009009.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensor view. J. Atmos. Sci., 67, 18971907, doi:10.1175/2010JAS3276.1.

    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.

    • Search Google Scholar
    • Export Citation
  • Nishizawa, T., N. Sugimoto, I. Matsui, A. Shimizu, B. Tatarov, and H. Okamoto, 2008: Algorithm to retrieve aerosol optical properties from high-spectral-resolution lidar and polarization Mie-scattering lidar measurements. IEEE Trans. Geosci. Remote Sens., 46, 40944103, doi:10.1109/TGRS.2008.2000797.

    • Search Google Scholar
    • Export Citation
  • Nishizawa, T., and Coauthors, 2011: Algorithms to retrieve optical properties of three-component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust. J. Quant. Spectrosc. Radiat. Transfer, 112, 254267, doi:10.1016/j.jqsrt.2010.06.002.

    • Search Google Scholar
    • Export Citation
  • Oikawa, E., T. Nakajima, T. Inoue, and D. Winker, 2013: A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation. J. Geophys. Res. Atmos., 118, 36873708, doi:10.1002/jgrd.50227.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai, 2003: An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar. J. Geophys. Res., 108, 4226, doi:10.1029/2001JD001225.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2007: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. J. Geophys. Res., 112, D08216, doi:10.1029/2006JD007628.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. J. Geophys. Res., 113, D24213, doi:10.1029/2008JD009812.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., K. Sato, and Y. Hagihara, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014, doi:10.1175/2009JTECHA1231.1.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2013: CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos., 118, 47484766, doi:10.1002/jgrd.50330.

    • Search Google Scholar
    • Export Citation
  • Pappalardo, G., and Coauthors, 2010: EARLINET correlative measurements for CALIPSO: First intercomparison results. J. Geophys. Res., 115, D00H19, doi:10.1029/2009JD012147.

    • Search Google Scholar
    • Export Citation
  • Pérez Albiñana, A., and Coauthors, 2010: The multi-spectral imager on board the EarthCARE spacecraft. Infrared Remote Sensing and Instrumentation XVIII, M. Strojnik and G. Paez, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7808), 780–815, doi:10.1117/12.858864.

  • Protat, A., J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer, 2010: The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27, 793810, doi:10.1175/2009JTECHA1397.1.

    • Search Google Scholar
    • Export Citation
  • Proulx, C., M. Allard, T. Pope, B. Tremblay, F. Williamson, J. Delderfield, and D. Parker, 2010: EarthCARE BBR detectors performance characterization. Sensors, Systems, and Next-Generation Satellites XIV, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7826), 78261T, doi:10.1117/12.868518.

  • Sato, K., and H. Okamoto, 2011: Refinement of global ice microphysics using spaceborne active sensors. J. Geophys. Res., 116, D20202, doi:10.1029/2011JD015885.

    • Search Google Scholar
    • Export Citation
  • Sato, K., H. Okamoto, M. K. Yamamoto, S. Fukao, H. Kumagai, Y. Ohno, H. Horie, and M. Abo, 2009: 95-GHz Doppler radar and lidar synergy for simultaneous ice microphysics and in-cloud vertical air motion retrieval. J. Geophys. Res., 114, D03203, doi:10.1029/2008JD010222.

    • Search Google Scholar
    • Export Citation
  • Schutgens, N. A., 2008: Simulated Doppler radar observations of inhomogeneous clouds. J. Atmos. Oceanic Technol., 25, 2642, doi:10.1175/2007JTECHA956.1.

    • Search Google Scholar
    • Export Citation
  • Shipley, S., D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, and J. Weinman, 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt., 22, 37163724, doi:10.1364/AO.22.003716.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Sun, W., G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 11, D22207, doi:10.1029/2011JD016422.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Y. Nakajima, and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 30193032, doi:10.1175/2010JAS3463.1.

    • Search Google Scholar
    • Export Citation
  • Sy, O. O., S. Tanelli, N. Takahashi, Y. Ohno, H. Horie, and P. Kollias, 2014: Simulation of EarthCARE spaceborne Doppler radar products using ground-based and airborne data: Effects of aliasing and nonuniform beam-filling. IEEE Trans. Geosci. Remote Sens., 52, 14631479, doi:10.1109/TGRS.2013.2251639.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., E. Im, S. L. Durden, L. Facheris, and D. Giuli, 2002: The effects of nonuniform beam filling on vertical rainfall velocity measurements with a spaceborne Doppler radar. J. Atmos. Oceanic Technol., 19, 1019–1034, doi:10.1175/1520-0426(2002)019<1019:TEONBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velázquez-Blázquez, A., and N. Clerbaux, 2010: Sensitivity study of the influence of a target spectral signature in the unfiltering process for broadband radiometers. ESA/ESTEC Final Rep., Contract 22460/09/NL/EL, 20 pp. [Available online at ftp://gerb.oma.be/almudena/SITS_DB_compressed/GeoType_data_base_desc.pdf.]

  • von Hoyningen-Huene, W., M. Freitag, and J. P. Burrows, 2003: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res., 108, 42604279, doi:10.1029/2001JD002018.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • Voors, R., and Coauthors, 2007: ECSIM: The simulator framework for EarthCARE. Sensors, Systems, and Next-Generation Satellites XI, R. Meynart et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6744), 67441Y, doi:10.1117/12.737738.

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhine, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Lidar Remote Sensing for Industry and Environmental Monitoring, U. H. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 152–158.

  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, doi:10.1175/2008JTECHA1221.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., Z. Want, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALISPO and CloudSat measurements. J. Geophys. Res., 115, D00H13, doi:10.1029/2009JD012143.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10945 5043 209
PDF Downloads 4896 1311 100