The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability

J. E. Kay Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by J. E. Kay in
Current site
Google Scholar
PubMed
Close
,
C. Deser Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by C. Deser in
Current site
Google Scholar
PubMed
Close
,
A. Phillips Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Phillips in
Current site
Google Scholar
PubMed
Close
,
A. Mai Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Mai in
Current site
Google Scholar
PubMed
Close
,
C. Hannay Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by C. Hannay in
Current site
Google Scholar
PubMed
Close
,
G. Strand Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by G. Strand in
Current site
Google Scholar
PubMed
Close
,
J. M. Arblaster Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, and Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by J. M. Arblaster in
Current site
Google Scholar
PubMed
Close
,
S. C. Bates Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. C. Bates in
Current site
Google Scholar
PubMed
Close
,
G. Danabasoglu Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by G. Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
J. Edwards Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Edwards in
Current site
Google Scholar
PubMed
Close
,
M. Holland Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by M. Holland in
Current site
Google Scholar
PubMed
Close
,
P. Kushner Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by P. Kushner in
Current site
Google Scholar
PubMed
Close
,
J.-F. Lamarque Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J.-F. Lamarque in
Current site
Google Scholar
PubMed
Close
,
D. Lawrence Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. Lawrence in
Current site
Google Scholar
PubMed
Close
,
K. Lindsay Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by K. Lindsay in
Current site
Google Scholar
PubMed
Close
,
A. Middleton Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Middleton in
Current site
Google Scholar
PubMed
Close
,
E. Munoz Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by E. Munoz in
Current site
Google Scholar
PubMed
Close
,
R. Neale Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. Neale in
Current site
Google Scholar
PubMed
Close
,
K. Oleson Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by K. Oleson in
Current site
Google Scholar
PubMed
Close
,
L. Polvani Department of Applied Physics and Applied Math, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by L. Polvani in
Current site
Google Scholar
PubMed
Close
, and
M. Vertenstein Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by M. Vertenstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.

CORRESPONDING AUTHOR: Jennifer E. Kay, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309, E-mail: jennifer.e.kay@colorado.edu

Abstract

While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.

CORRESPONDING AUTHOR: Jennifer E. Kay, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 216 UCB, Boulder, CO 80309, E-mail: jennifer.e.kay@colorado.edu
Save
  • Bengtsson, L., K. I. Hodges, E. Roeckner, and R. Brokopf, 2006: On the natural variability of pre-industrial European climate. Climate Dyn., 27, 743760, doi:10.1007/s00382-006-0168-y.

    • Search Google Scholar
    • Export Citation
  • CDC, 2006: Heat-related deaths—United States, 1999–2003. Centers for Disease Control Mortality and Morbidity Weekly Rep. July 28, 2006/55(29), 796–798. [Available online at www.cdc.gov/mmwr/preview/mmwrhtml/mm5529a2.htm.]

  • Clement, A., and P. Dinezio, 2014: The tropical Pacific Ocean—Back in the driver’s seat? Science, 343, 976978, doi:10.1126/science.1248115.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, doi:10.1007/s003820050230.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 18, 50295060, doi:10.1002/jgrd.50316.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, doi:10.1038/nclimate2051.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, A. Tardy, and R. Basu, 2014: The impact of recent heat waves on human health in California. J. Appl. Meteor. Climatol., 53, 319, doi:10.1175/JAMC-D-13-0130.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. G., and T. I. Elliot, 2006: Climatic trends. Climate Dyn., 26, 567585, doi:10.1007/s00382-005-0102-8.

  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, doi:10.1175/JCLI-D-12-00567.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change, 109, 191212, doi:10.1007/s10584-011-0155-0.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, doi:10.1175/JCLI-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lindsay, K., and Coauthors, 2014: Preindustrial-control and twentieth-century carbon cycle experiments with the Earth system model CESM1(BGC). J. Climate, 27, 89819005, doi:10.1175/JCLI-D-12-00565.1.

    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800, doi:10.1175/JCLI-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683, doi:10.1175/JCLI-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1 (CAM5) compared to CCSM4. J. Climate, 26, 62876308, doi:10.1175/JCLI-D-12-00572.1.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Climate, 26, 92919312, doi:10.1175/JCLI-D-12-00566.1.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., P. J. Kushner, and C. Derksen, 2014: Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Climate Dyn., 43, 345359, doi:10.1007/s00382-013-1954-y.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Neely, R. R., III, and Coauthors, 2013: Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett., 40, 9991004, doi:10.1002/grl.50263.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and E. M. Fischer, 2013: The usefulness of different realizations for the model evaluation of regional trends in heat waves. Geophys. Res. Lett., 40, 57935797, doi:10.1002/2013GL057833.

    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, and J. Fasullo, 2014: Evaluating modes of variability in climate models. Eos Trans. Amer. Geophys. Union, 95, 453455.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp.

  • Santer, B., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, doi:10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns, and trends. Climatic Change, 118, 811825, doi:10.1007/s10584-012-0659-2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely III, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, doi:10.1126/science.1206027.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: The CMIP5 experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2014: The case of the missing heat. Nature, 505, 276278, doi:10.1038/505276a.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31684 7581 414
PDF Downloads 20058 3983 271