The IITM Earth System Model: Transformation of a Seasonal Prediction Model to a Long-Term Climate Model

P. Swapna Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by P. Swapna in
Current site
Google Scholar
PubMed
Close
,
M. K. Roxy Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by M. K. Roxy in
Current site
Google Scholar
PubMed
Close
,
K. Aparna Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by K. Aparna in
Current site
Google Scholar
PubMed
Close
,
K. Kulkarni Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India, and Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by K. Kulkarni in
Current site
Google Scholar
PubMed
Close
,
A. G. Prajeesh Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by A. G. Prajeesh in
Current site
Google Scholar
PubMed
Close
,
K. Ashok Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by K. Ashok in
Current site
Google Scholar
PubMed
Close
,
R. Krishnan Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by R. Krishnan in
Current site
Google Scholar
PubMed
Close
,
S. Moorthi NOAA/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by S. Moorthi in
Current site
Google Scholar
PubMed
Close
,
A. Kumar NOAA/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by A. Kumar in
Current site
Google Scholar
PubMed
Close
, and
B. N. Goswami Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by B. N. Goswami in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With the goal of building an Earth system model appropriate for detection, attribution, and projection of changes in the South Asian monsoon, a state-of-the-art seasonal prediction model, namely the Climate Forecast System version 2 (CFSv2) has been adapted to a climate model suitable for extended climate simulations at the Indian Institute of Tropical Meteorology (IITM), Pune, India. While the CFSv2 model has been skillful in predicting the Indian summer monsoon (ISM) on seasonal time scales, a century-long simulation with it shows biases in the ocean mixed layer, resulting in a 1.5°C cold bias in the global mean surface air temperature, a cold bias in the sea surface temperature (SST), and a cooler-than-observed troposphere. These biases limit the utility of CFSv2 to study climate change issues. To address biases, and to develop an Indian Earth System Model (IITM ESMv1), the ocean component in CFSv2 was replaced at IITM with an improved version, having better physics and interactive ocean biogeochemistry. A 100-yr simulation with the new coupled model (with biogeochemistry switched off) shows substantial improvements, particularly in global mean surface temperature, tropical SST, and mixed layer depth. The model demonstrates fidelity in capturing the dominant modes of climate variability such as the ENSO and Pacific decadal oscillation. The ENSO–ISM teleconnections and the seasonal leads and lags are also well simulated. The model, a successful result of Indo–U.S. collaboration, will contribute to the IPCC’s Sixth Assessment Report (AR6) simulations, a first for India.

CURRENT AFFILIATION: UCESS, University of Hyderabad, Hyderabad, India

CORRESPONDING AUTHOR: Ashok Karumuri, Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune 411008, India, E-mail: ashok@tropmet.res.in; ashokkarumuri@uohyd.ac.in

A supplement to this article is available online (10.1175/BAMS-D-13-00276.2)

Abstract

With the goal of building an Earth system model appropriate for detection, attribution, and projection of changes in the South Asian monsoon, a state-of-the-art seasonal prediction model, namely the Climate Forecast System version 2 (CFSv2) has been adapted to a climate model suitable for extended climate simulations at the Indian Institute of Tropical Meteorology (IITM), Pune, India. While the CFSv2 model has been skillful in predicting the Indian summer monsoon (ISM) on seasonal time scales, a century-long simulation with it shows biases in the ocean mixed layer, resulting in a 1.5°C cold bias in the global mean surface air temperature, a cold bias in the sea surface temperature (SST), and a cooler-than-observed troposphere. These biases limit the utility of CFSv2 to study climate change issues. To address biases, and to develop an Indian Earth System Model (IITM ESMv1), the ocean component in CFSv2 was replaced at IITM with an improved version, having better physics and interactive ocean biogeochemistry. A 100-yr simulation with the new coupled model (with biogeochemistry switched off) shows substantial improvements, particularly in global mean surface temperature, tropical SST, and mixed layer depth. The model demonstrates fidelity in capturing the dominant modes of climate variability such as the ENSO and Pacific decadal oscillation. The ENSO–ISM teleconnections and the seasonal leads and lags are also well simulated. The model, a successful result of Indo–U.S. collaboration, will contribute to the IPCC’s Sixth Assessment Report (AR6) simulations, a first for India.

CURRENT AFFILIATION: UCESS, University of Hyderabad, Hyderabad, India

CORRESPONDING AUTHOR: Ashok Karumuri, Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune 411008, India, E-mail: ashok@tropmet.res.in; ashokkarumuri@uohyd.ac.in

A supplement to this article is available online (10.1175/BAMS-D-13-00276.2)

Supplementary Materials

    • Supplemental Materials (PDF 3.56 MB)
Save
  • Achuthavarier, D., and V. Krishnamurthy, 2010: Relation between intraseasonal and interannual variability of the South Asian monsoon in the National Centers for Environmental Predictions forecast systems. J. Geophys. Res., 115, D08104, doi:10.1029/2009JD012865.

    • Search Google Scholar
    • Export Citation
  • Achuthavarier, D., V. Krishnamurthy, B. P. Kirtman, and B. Huang, 2012: Role of the Indian Ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP Climate Forecast System. J. Climate, 25, 24902508, doi:10.1175/JCLI-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and J. M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, doi:10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265.

  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, doi:10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and Coauthors, 2015: Evaluation of the CFSv2 CMIP5 decadal predictions. Climate Dyn., 44, 543557, doi:10.1007/s00382-014-2360-9.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

    • Search Google Scholar
    • Export Citation
  • Chaudhari, H. S., and Coauthors, 2013: Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon. Int. J. Climatol., 33, 10571069, doi:10.1002/joc.3489.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 2000: Dissipative heating in climate models. Quart. J. Roy. Meteor. Soc., 126, 925939, doi:10.1002/qj.49712656408.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. GFDL Ocean Group Tech Rep. 5, 371 pp.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. Schmidt, and M. Herzfeld, 2009: Elements of mom4p1. GFDL Ocean Group Tech Rep. 6, 444 pp. [Available online at http://data1.gfdl.noaa.gov/∼arl/pubrel/r/mom4p1/src/mom4p1/doc/guide4p1.pdf.]

  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, DOI:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., 2003: The suitability of large-scale ocean models for adapting parameterizations of boundary mixing and a description of a refined bulk mixed layer model. Near-Boundary Processes and Their Parameterization: Proc. 13th ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 187–203.

  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hazra, A., H. S. Chaudhari, S. A. Rao, B. N. Goswami, A. Dhakate, S. Pokhrel, and S. K. Saha, 2015: Improvement in Indian Summer Monsoon simulations for NCEP CFSv2 through modification of cloud microphysical scheme and critical humidity. Int. J. Climate, doi:10.1002/joc.4320, in press.

    • Search Google Scholar
    • Export Citation
  • Hu, Z-Z., B. Huang, and K. Pegion, 2008: Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air–sea interaction. J. Geophys. Res., 113, D12114, doi:10.1029/2007JD009514.

    • Search Google Scholar
    • Export Citation
  • Hu, Z-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452759, doi:10.1007/s00382-012-1431-z.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, and B. Jha, 2007: Evolution of model systematic errors in the tropical Atlantic basin from the NCEP coupled hindcasts. Climate Dyn., 28, 661682, doi:10.1007/s00382-006-0223-8.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Climate drift of AMOC, North Atlantic salinity and Arctic sea ice in CFSv2 decadal predictions. Climate Dyn., 44, 559583, doi:10.1007/s00382-014-2395-y.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. N., A. A. Gupta, A. Taschetto, C. Ummenhofer, A. Moise, and K. Ashok, 2013: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dyn., 41, 30733102, doi:10.1007/s00382-013-1676-1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keshavamurty, R. N., 1982: Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation. J. Atmos. Sci., 39, 12411259, doi:10.1175/1520-0469(1982)039<1241:ROTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and K. A. Kulkarni, 1998: The relationship between some large scale atmospheric parameters and rainfall over Southeast Asia: A comparison with features over India. Theor. Appl. Climatol., 59, 111, doi:10.1007/s007040050009.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, doi:10.1007/s00382-013-1856-z.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, doi:10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 13421347, doi:10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, doi:10.1007/s00382-003-0330-8.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, doi:10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-G., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments: The relationships between the Asian–Australian monsoon. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105, 3295, doi:10.1029/1999JC900294.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and A. Gnanadesikan, 1998: Transient response in a Z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126, 32483270, doi:10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pattanaik, D., and A. Kumar, 2010: Prediction of summer monsoon rainfall over India using the NCEP Climate Forecast System. Climate Dyn., 34, 557572, doi:10.1007/s00382-009-0648-y.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., H. S. Chaudhari, S. K. Saha, A. Dhakate, R. K. Yadav, K. Salunke, S. Mahapatra, and S. A. Rao, 2012: ENSO, IOD and Indian summer monsoon in NCEP Climate Forecast System. Climate Dyn., 39, 21432165, doi:10.1007/s00382-012-1349-5.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., A. Dhakate, H. S. Chaudhari, and S. K. Saha, 2013: Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon. Theor. Appl. Climatol., 111, 6578, doi:10.1007/s00704-012-0652-8.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91, 296306.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, doi:10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2012: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 117, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. A. J., and R. R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97, 5493, doi:10.1029/92JC00095.

    • Search Google Scholar
    • Export Citation
  • Shikha, S., 2013: Indian Ocean Dipole in CFSv2 and ESMv1. Role of ocean biases. CAT-ESSC, IITM Dissertation, 74 pp.

  • Shukla, J., 1995: Predictability of the tropical atmosphere, the tropical ocean and TOGA. Proc. Int. Conf. on the Tropical Ocean and Global Atmosphere (TOGA) Programme, Geneva, Switzerland, WCRP-91, 725–730.

  • Shukla, J., and D. A. Paolino, 1983: The Southern Oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111, 18301837, doi:10.1175/1520-0493(1983)111<1830:TSOALR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sikka, D., 1980: Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 89, 179195.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Stacey, M. W. M., S. Pond, and Z. P. Z. Nowak, 1995: A numerical model of the circulation in Knight Inlet, British Columbia, Canada. J. Phys. Oceanogr., 25, 10371062, doi:10.1175/1520-0485(1995)025<1037:ANMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, R., S. Moorthi, H. Xiao, and C. R. Mechoso, 2010: Simulation of low clouds in the southeast Pacific by the NCEP GFS: Sensitivity to vertical mixing. Atmos. Chem. Phys., 10, 12 26112 272, doi:10.5194/acp-10-12261-2010.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., J.-L. F. Li, T. S. L’Ecuyer, and W.-T. Chen, 2011: The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys. Res. Lett., 38, L06802, doi:10.1029/2010GL046478.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., E. Rasmusson, and T. Mitchell, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, doi:10.1029/97JC02905.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267285, doi:10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, W., S. Saha, H.-L. H. Pan, S. Nadiga, and G. White, 2005: Simulation of ENSO in the new NCEP coupled forecast system model (CFS03). Mon. Wea. Rev., 133, 15741593, doi:10.1175/MWR2936.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S., W. Wang, M. Chen, and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694, doi:10.1175/2011JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118B, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. Magaña, and T. Palmer, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Zhang, V. E. Kousky, R. W. Higgins, S.-H. Yoo, J. Liang, and Y. Fan, 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 37553775, doi:10.1175/2008JCLI1961.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., A. Kumar, and Y. Xue, 2007: Analysis of the ENSO cycle in the NCEP coupled forecast model. J. Climate, 20, 12651284, doi:10.1175/JCLI4062.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3618 2091 117
PDF Downloads 1059 169 14