The Deep Convective Clouds and Chemistry (DC3) Field Campaign

Mary C. Barth NCAR,* Boulder, Colorado

Search for other papers by Mary C. Barth in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Cantrell University of Colorado, Boulder, Colorado

Search for other papers by Christopher A. Cantrell in
Current site
Google Scholar
PubMed
Close
,
William H. Brune The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by William H. Brune in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Colorado State University, Ft. Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
James H. Crawford NASA Langley Research Center, Hampton, Virginia

Search for other papers by James H. Crawford in
Current site
Google Scholar
PubMed
Close
,
Heidi Huntrieser Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Heidi Huntrieser in
Current site
Google Scholar
PubMed
Close
,
Lawrence D. Carey University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
,
Donald MacGorman NOAA/NSSL, Norman, Oklahoma

Search for other papers by Donald MacGorman in
Current site
Google Scholar
PubMed
Close
,
Morris Weisman NCAR,* Boulder, Colorado

Search for other papers by Morris Weisman in
Current site
Google Scholar
PubMed
Close
,
Kenneth E. Pickering NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kenneth E. Pickering in
Current site
Google Scholar
PubMed
Close
,
Eric Bruning Texas Tech University, Lubbock, Texas

Search for other papers by Eric Bruning in
Current site
Google Scholar
PubMed
Close
,
Bruce Anderson NASA Langley Research Center, Hampton, Virginia

Search for other papers by Bruce Anderson in
Current site
Google Scholar
PubMed
Close
,
Eric Apel NCAR,* Boulder, Colorado

Search for other papers by Eric Apel in
Current site
Google Scholar
PubMed
Close
,
Michael Biggerstaff University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael Biggerstaff in
Current site
Google Scholar
PubMed
Close
,
Teresa Campos NCAR,* Boulder, Colorado

Search for other papers by Teresa Campos in
Current site
Google Scholar
PubMed
Close
,
Pedro Campuzano-Jost University of Colorado, Boulder, Colorado

Search for other papers by Pedro Campuzano-Jost in
Current site
Google Scholar
PubMed
Close
,
Ronald Cohen University of California, Berkeley, Berkeley, California

Search for other papers by Ronald Cohen in
Current site
Google Scholar
PubMed
Close
,
John Crounse California Institute of Technology, Pasadena, California

Search for other papers by John Crounse in
Current site
Google Scholar
PubMed
Close
,
Douglas A. Day University of Colorado, Boulder, Colorado

Search for other papers by Douglas A. Day in
Current site
Google Scholar
PubMed
Close
,
Glenn Diskin NASA Langley Research Center, Hampton, Virginia

Search for other papers by Glenn Diskin in
Current site
Google Scholar
PubMed
Close
,
Frank Flocke NCAR,* Boulder, Colorado

Search for other papers by Frank Flocke in
Current site
Google Scholar
PubMed
Close
,
Alan Fried University of Colorado, Boulder, Colorado

Search for other papers by Alan Fried in
Current site
Google Scholar
PubMed
Close
,
Charity Garland University of California, Berkeley, Berkeley, California

Search for other papers by Charity Garland in
Current site
Google Scholar
PubMed
Close
,
Brian Heikes School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Brian Heikes in
Current site
Google Scholar
PubMed
Close
,
Shawn Honomichl NCAR,* Boulder, Colorado

Search for other papers by Shawn Honomichl in
Current site
Google Scholar
PubMed
Close
,
Rebecca Hornbrook NCAR,* Boulder, Colorado

Search for other papers by Rebecca Hornbrook in
Current site
Google Scholar
PubMed
Close
,
L. Gregory Huey Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by L. Gregory Huey in
Current site
Google Scholar
PubMed
Close
,
Jose L. Jimenez University of Colorado, Boulder, Colorado

Search for other papers by Jose L. Jimenez in
Current site
Google Scholar
PubMed
Close
,
Timothy Lang Colorado State University, Ft. Collins, Colorado

Search for other papers by Timothy Lang in
Current site
Google Scholar
PubMed
Close
,
Michael Lichtenstern Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Michael Lichtenstern in
Current site
Google Scholar
PubMed
Close
,
Tomas Mikoviny Oak Ridge Associated Universities, Oak Ridge, Tennessee

Search for other papers by Tomas Mikoviny in
Current site
Google Scholar
PubMed
Close
,
Benjamin Nault University of California, Berkeley, Berkeley, California

Search for other papers by Benjamin Nault in
Current site
Google Scholar
PubMed
Close
,
Daniel O’Sullivan United States Naval Academy, Annapolis, Maryland

Search for other papers by Daniel O’Sullivan in
Current site
Google Scholar
PubMed
Close
,
Laura L. Pan NCAR,* Boulder, Colorado

Search for other papers by Laura L. Pan in
Current site
Google Scholar
PubMed
Close
,
Jeff Peischl NOAA/ESRL, Boulder, Colorado

Search for other papers by Jeff Peischl in
Current site
Google Scholar
PubMed
Close
,
Ilana Pollack NOAA/ESRL, Boulder, Colorado

Search for other papers by Ilana Pollack in
Current site
Google Scholar
PubMed
Close
,
Dirk Richter University of Colorado, Boulder, Colorado

Search for other papers by Dirk Richter in
Current site
Google Scholar
PubMed
Close
,
Daniel Riemer University of Miami, Coral Gables, Florida

Search for other papers by Daniel Riemer in
Current site
Google Scholar
PubMed
Close
,
Thomas Ryerson NOAA/ESRL, Boulder, Colorado

Search for other papers by Thomas Ryerson in
Current site
Google Scholar
PubMed
Close
,
Hans Schlager Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Hans Schlager in
Current site
Google Scholar
PubMed
Close
,
Jason St. Clair California Institute of Technology, Pasadena, California

Search for other papers by Jason St. Clair in
Current site
Google Scholar
PubMed
Close
,
James Walega University of Colorado, Boulder, Colorado

Search for other papers by James Walega in
Current site
Google Scholar
PubMed
Close
,
Petter Weibring University of Colorado, Boulder, Colorado

Search for other papers by Petter Weibring in
Current site
Google Scholar
PubMed
Close
,
Andrew Weinheimer NCAR,* Boulder, Colorado

Search for other papers by Andrew Weinheimer in
Current site
Google Scholar
PubMed
Close
,
Paul Wennberg California Institute of Technology, Pasadena, California

Search for other papers by Paul Wennberg in
Current site
Google Scholar
PubMed
Close
,
Armin Wisthaler Institut für Ionenphysik und Angewandte Physik, Innsbruck, Austria

Search for other papers by Armin Wisthaler in
Current site
Google Scholar
PubMed
Close
,
Paul J. Wooldridge University of California, Berkeley, Berkeley, California

Search for other papers by Paul J. Wooldridge in
Current site
Google Scholar
PubMed
Close
, and
Conrad Ziegler NOAA/NSSL, Norman, Oklahoma

Search for other papers by Conrad Ziegler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

CURRENT AFFILIATION: NASA Marshall Space Flight Center, Huntsville, Alabama

CORRESPONDING AUTHOR: Mary C. Barth, NCAR, P.O. Box 3000, Boulder, CO 80307, E-mail: barthm@ucar.edu

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

CURRENT AFFILIATION: NASA Marshall Space Flight Center, Huntsville, Alabama

CORRESPONDING AUTHOR: Mary C. Barth, NCAR, P.O. Box 3000, Boulder, CO 80307, E-mail: barthm@ucar.edu
Save
  • Allen, D., K. Pickering, B. Duncan, and M. Damon, 2010: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model. J. Geophys. Res., 115, D22301, doi:10.1029/2010JD014062.

    • Search Google Scholar
    • Export Citation
  • Ancellet, G., J. Leclair de Bellevue, C. Mari, P. Nedelec, A. Kukui, A. Borbon, and P. Perros, 2009: Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign. Atmos. Chem. Phys., 9, 383411, doi:10.5194/acp-9-383-2009.

    • Search Google Scholar
    • Export Citation
  • Andrews, E., P. J. Sheridan, and J. A. Ogren, 2011: Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma. Atmos. Chem. Phys., 11, 10 661–10 676, doi:10.5194/acp-11-10661-2011.

    • Search Google Scholar
    • Export Citation
  • Avery, M., and Coauthors, 2010: Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4. J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.

    • Search Google Scholar
    • Export Citation
  • Bain, A. L., 2013: Polarimetric Doppler radar and electrical observations of deep moist convection across northern Alabama during the Deep Convective Clouds and Chemistry Experiment. M.S. thesis, Dept. of Atmospheric Sciences, University of Alabama in Huntsville, 148 pp.

    • Search Google Scholar
    • Export Citation
  • Barret, B., and Coauthors, 2010: Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: A multi-model study. Atmos. Chem. Phys., 10, 57195738, doi:10.5194/acp-10-5719-2010.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., A. L. Stuart, and W. C. Skamarock, 2001: Numerical simulations of the July 10, 1996, Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment storm: Redistribution of soluble tracers. J. Geophys. Res., 106, 12 381–12 400, doi:10.1029/2001JD900139.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., S.-W. Kim, W. C. Skamarock, A. L. Stuart, K. E. Pickering, and L. E. Ott, 2007a: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm. J. Geophys. Res., 112, D13310, doi:10.1029/2006JD008046.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2007b: Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys., 7, 47094731, doi:10.5194/acp-7-4709-2007.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., J. Lee, A. Hodzic, G. Pfister, W. C. Skamarock, J. Worden, J. Wong, and D. Noone, 2012: Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon. Atmos. Chem. Phys., 12, 11 003–11 026, doi:10.5194/acp-12-11003-2012.

    • Search Google Scholar
    • Export Citation
  • Beirle, S., W. Koshak, R. Blakeslee, and T. Wagner, 2014: Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci., 14, 27152726, doi:10.5194/nhess-14-2715-2014.

    • Search Google Scholar
    • Export Citation
  • Bertram, T. H., and Coauthors, 2007: Direct measurements of the convective recycling of the upper troposphere. Science, 315, 816820, doi:10.1126/science.1134548.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108–122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124029, doi:10.1175/JAS-D-12-0289.1.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., S. A. Weiss, and K. M. Calhoun, 2014: Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res., 135–136, 274284, doi:10.1016/j.atmosres.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Brunner, D., J. Staehelin, and D. Jeker, 1998: Large-scale nitrogen oxide plumes in the tropopause region and implications for ozone. Science, 282, 13051309, doi:10.1126/science.282.5392.1305.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., D. C. Montague, and T. Deshler, 2011: Comparison of measured and calculated scattering from surface aerosols with an average, a size-dependent, and a time-dependent refractive index. J. Geophys. Res., 116, D02202, doi:10.1029/2010JD014607.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chatfield, R. B., and P. J. Crutzen, 1984: Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors. J. Geophys. Res., 89, 71117132, doi:10.1029/JD089iD05p07111.

    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2006: Large upper tropospheric ozone enhancements above mid-latitude North America during summer: In situ evidence from the IONS and MOZAIC ozone monitoring network. J. Geophys. Res., 111, D24S05, doi:10.1029/2006JD007306.

    • Search Google Scholar
    • Export Citation
  • Crawford, J. H., and Coauthors, 2000: Evolution and chemical consequences of lightning-produced NOx observed in the North Atlantic upper troposphere. J. Geophys. Res., 105, 19 795–19 809, doi:10.1029/2000JD900183.

    • Search Google Scholar
    • Export Citation
  • DeCaria, A. J., K. E. Pickering, G. L. Stenchikov, J. R. Scala, J. L. Stith, J. E. Dye, B. A. Ridley, and P. Laroche, 2000: A cloud-scale model study of lightning-generated NOx in an individual thunderstorm during STERAO-A. J. Geophys. Res., 105, 11 601–11 616, doi:10.1029/2000JD900033.

    • Search Google Scholar
    • Export Citation
  • DeCaria, A. J., K. E. Pickering, G. L. Stenchikov, and L. E. Ott, 2005: Lightning-generated NOx and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone (STERAO-A) thunderstorm. J. Geophys. Res., 110, D14303, doi:10.1029/2004JD005556.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235, 460465, doi:10.1126/science.235.4787.460.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2000: An overview of the Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm. J. Geophys. Res., 105, 10 023–10 045, doi:10.1029/1999JD901116.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 4367, doi:10.5194/gmd-3-43-2010.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130, 2349–2372, doi:10.1175/1520-0493(2002)130<2349:IOTLEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Hanlon, C. J., G. S. Young, J. Verlinde, A. A. Small, and S. Bose, 2014: Probabilistic forecasting for isolated thunderstorms using a genetic algorithm: The DC3 campaign. J. Geophys. Res. Atmos., 119, 6574, doi:10.1002/2013JD020195.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and Coauthors, 2014: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J. Geophys. Res. Atmos., 119, 10 941–10 958, doi:10.1002/2014JD021485.

    • Search Google Scholar
    • Export Citation
  • Hudman, R. C., and Coauthors, 2007: Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. J. Geophys. Res., 112, D12S05, 10.1029/2006JD007912.

    • Search Google Scholar
    • Export Citation
  • Hudman, R. C., and Coauthors, 2009: North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations. J. Geophys. Res., 114, D07302, doi:10.1029/2008JD010126.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2002: Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J. Geophys. Res., 107, 4113, doi:10.1029/2000JD000209.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2007: Lightning-produced NOx over Brazil during TROCCINOX: Airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos. Chem. Phys., 7, 29873013, doi:10.5194/acp-7-2987-2007.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2008: Lightning activity in Brazilian thunderstorms during TROCCINOX: Implications for NOx production. Atmos. Chem. Phys., 8, 921953, doi:10.5194/acp-8-921-2008.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2009: NOx production by lightning in Hector: First airborne measurements during SCOUT-O3/ACTIVE. Atmos. Chem. Phys., 9, 83778412, doi:10.5194/acp-9-8377-2009.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2011: Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmos. Chem. Phys., 11, 25032536, doi:10.5194/acp-11-2503-2011.

    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., and Coauthors, 1997: Observed OH and HO2 in the upper troposphere suggest a major source from convective injection of peroxides. Geophys. Res. Lett., 24, 31813184, doi:10.1029/97GL03004.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, doi:10.1175/MWR-D-13-00361.1.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 11071125, doi:10.1175/BAMS-85-8-1107.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489507, doi:10.1175/MWR-D-13-00184.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2005: North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. J. Geophys. Res., 110, D10301, doi:10.1029/2004JD005039.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2014: Brown carbon in the continental troposphere. Geophys. Res. Lett., 41, 21912195, doi:10.1002/2013GL058976.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. R. Krehbiel, W. Rison, E. C. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607, doi:10.1175/MWR2994.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., I. R. Apostolakopoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. Krehbiel, 2011: The timing of cloud-to-ground lightning relative to total lightning activity. Mon. Wea. Rev., 139, 38713886, doi:10.1175/MWR-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 77857790, doi:10.1002/2014GL061921.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., A. M. Thompson, R. R. Dickerson, W. T. Luke, D. P. McNamara, J. P. Greenberg, and P. R. Zimmerman, 1990: Model calculations of tropospheric ozone production potential following observed convective events. J. Geophys. Res., 95, 14 049–14 062, doi:10.1029/JD095iD09p14049.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., and Coauthors, 1996: Convective transport of biomass burning emissions over Brazil during TRACE A. J. Geophys. Res., 101, 23 993–24 012, doi:10.1029/96JD00346.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2007: Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.

    • Search Google Scholar
    • Export Citation
  • Qie, X., R. Toumi, and Y. Zhou, 2003: Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chin. Sci. Bull., 48, 296299.

    • Search Google Scholar
    • Export Citation
  • Ridley, B., J. G. Walega, J. E. Dye, and F. E. Grahek, 1994: Distributions of NO, NOx, NOy, and O3 to 12 km altitude during the summer monsoon season over New Mexico. J. Geophys. Res., 99, 25 519–25 534, doi:10.1029/94JD02210.

    • Search Google Scholar
    • Export Citation
  • Ridley, B., and Coauthors, 2004a: Convective transport of reactive constituents to the tropical and mid-latitude tropopause region: I. Observations. Atmos. Environ., 38, 12591274, doi:10.1016/j.atmosenv.2003.11.038.

    • Search Google Scholar
    • Export Citation
  • Ridley, B., and Coauthors, 2004b: Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere. J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, doi:10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Romine, G., C. Schwartz, J. Berner, K. R. Smith, C. Snyder, J. L. Anderson, and M. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., T. C. Marshall, M. Stolzenburg, and F. Fitzgibbon, 1999: Test of a GPS radiosonde in thunderstorm electrical environments. J. Atmos. Oceanic Technol., 16, 550–560, doi:10.1175/1520-0426(1999)016<0550:TOAGRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271, doi:10.1016/j.atmosres.2004.11.029.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and H. Huntrieser, 2007: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys., 7, 38233907, doi:10.5194/acp-7-3823-2007.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C., G. Romine, K. Smith, and M. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Singh, H. B., and Coauthors, 2007: Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. J. Geophys. Res., 112, D12S04, doi:10.1029/2006JD007664.

    • Search Google Scholar
    • Export Citation
  • Snow, J. A., B. G. Heikes, H. Shen, D. W. O’Sullivan, A. Fried, and J. Walega, 2007: Hydrogen peroxide, methyl hydroperoxide, and formaldehyde over North America and the North Atlantic. J. Geophys. Res., 112, D12S07, doi:10.1029/2006JD007746.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681, doi:10.1175/2006MWR1953.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., W. D. Rust, D. R. MacGorman, E. C. Bruning, and P. R. Krehbiel, 2008: Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741756, doi:10.1175/2007MWR2023.1.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 1386–1395, doi:10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. Y., X. X. Tie, and D. W. Bond, 2003: Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Proc. Natl. Acad. Sci. USA, 100, 15051509, doi:10.1073/pnas.252763799.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6871 4112 87
PDF Downloads 2269 449 28