Solar Energy Prediction: An International Contest to Initiate Interdisciplinary Research on Compelling Meteorological Problems

Amy McGovern School of Computer Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Amy McGovern in
Current site
Google Scholar
PubMed
Close
,
David John Gagne II School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David John Gagne II in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Basara School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jeffrey Basara in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Hamill NOAA/ESRL Physical Sciences Division, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
, and
David Margolin EarthRisk Technologies and Solutions, San Diego, California

Search for other papers by David Margolin in
Current site
Google Scholar
PubMed
Close
Restricted access

CORRESPONDING AUTHOR: Amy McGovern, 110 W. Boyd St., Norman, OK 73019, E-mail: amcgovern@ou.edu

CORRESPONDING AUTHOR: Amy McGovern, 110 W. Boyd St., Norman, OK 73019, E-mail: amcgovern@ou.edu
Save
  • Breiman, L., 2001: Random Forests. Mach. Learn., 45, 5–32, doi:10.1023/A:1010933404324.

  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, 1984: Classification and Regression Trees. Chapman and Hall/CRC.

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 5–19, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freund, Y., and R. E. Schapire, 1995: A desicion-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory, Springer, 23–37.

  • Friedman, J. H., 2001: Greedy function approximation: a gradient boosting machine. Ann. Stat., 29, doi:10.1214/aos/1013203451.

  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and J. S. Kain, 2010: A gaussian mixture model approach to forecast verification. Wea. Forecasting, 25, 908–920, doi:10.1175/2010WAF2222355.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. L. Elmore, and M. B. Richman, 2010: Reaching scientific consensus through a competition. Bull. Amer. Meteor. Soc., 91, 1423–1427, doi:10.1175/2010BAMS2870.1.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301–321, doi:10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex algorithm for function minimization. Comput. J., 7, 308–313, doi:10.1093/comjnl/7.4.308.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 2825–2830.

  • Rasmussen, C. E., and C. K. I. Williams, 2005: Gaussian Processes for Machine Learning. The MIT Press, 266 pp.

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. S. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474–494, doi:10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operation forecast system. Tellus, 60A, 62–79.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8217 7303 57
PDF Downloads 760 106 4