Clouds in the Cloud: Weather Forecasts and Applications within Cloud Computing Environments

Andrew L. Molthan NASA Short-term Prediction Research and Transition (SPoRT) Center, and NASA Marshall Space Flight Center/Earth Science Office, Huntsville, Alabama

Search for other papers by Andrew L. Molthan in
Current site
Google Scholar
PubMed
Close
,
Jonathan L. Case NASA SPoRT Center, and ENSCO, Inc., Huntsville, Alabama

Search for other papers by Jonathan L. Case in
Current site
Google Scholar
PubMed
Close
,
Jason Venner NASA Ames Research Center, and Mirantis, Inc., Mountain View, California

Search for other papers by Jason Venner in
Current site
Google Scholar
PubMed
Close
,
Richard Schroeder NASA Ames Research Center, and Dell Services Federal Government, Mountain View, California

Search for other papers by Richard Schroeder in
Current site
Google Scholar
PubMed
Close
,
Milton R. Checchi NASA Ames Research Center, Mountain View, California

Search for other papers by Milton R. Checchi in
Current site
Google Scholar
PubMed
Close
,
Bradley T. Zavodsky NASA Short-term Prediction Research and Transition (SPoRT) Center, and NASA Marshall Space Flight Center/Earth Science Office, Huntsville, Alabama

Search for other papers by Bradley T. Zavodsky in
Current site
Google Scholar
PubMed
Close
,
Ashutosh Limaye NASA Marshall Space Flight Center/Earth Science Office, Huntsville, Alabama

Search for other papers by Ashutosh Limaye in
Current site
Google Scholar
PubMed
Close
, and
Raymond G. O’Brien NASA Ames Research Center, Mountain View, California

Search for other papers by Raymond G. O’Brien in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud computing offers new opportunities to the scientific community through cloud-deployed software, data-sharing and collaboration tools, and the use of cloud-based computing infrastructure to support data processing and model simulations. This article provides a review of cloud terminology of possible interest to the meteorological community, and focuses specifically on the use of infrastructure as a service (IaaS) concepts to provide a platform for regional numerical weather prediction. Special emphasis is given to developing countries that may have limited access to traditional supercomputing facilities. Amazon Elastic Compute Cloud (EC2) resources were used in an IaaS capacity to provide regional weather simulations with costs ranging from $40 to $75 per 48-h forecast, depending upon the configuration. Simulations provided a reasonable depiction of sensible weather elements and precipitation when compared against typical validation data available over Central America and the Caribbean.

CORRESPONDING AUTHOR: Andrew L. Molthan, NASA Marshall Space Flight Center, Huntsville, AL 35811, E-mail: andrew.molthan@nasa.gov

Abstract

Cloud computing offers new opportunities to the scientific community through cloud-deployed software, data-sharing and collaboration tools, and the use of cloud-based computing infrastructure to support data processing and model simulations. This article provides a review of cloud terminology of possible interest to the meteorological community, and focuses specifically on the use of infrastructure as a service (IaaS) concepts to provide a platform for regional numerical weather prediction. Special emphasis is given to developing countries that may have limited access to traditional supercomputing facilities. Amazon Elastic Compute Cloud (EC2) resources were used in an IaaS capacity to provide regional weather simulations with costs ranging from $40 to $75 per 48-h forecast, depending upon the configuration. Simulations provided a reasonable depiction of sensible weather elements and precipitation when compared against typical validation data available over Central America and the Caribbean.

CORRESPONDING AUTHOR: Andrew L. Molthan, NASA Marshall Space Flight Center, Huntsville, AL 35811, E-mail: andrew.molthan@nasa.gov
Save
  • Amazon Web Services, cited 2014: Amazon EC2 pricing. [Available online at https://aws.amazon.com/ec2/pricing/.]

  • Brown, B. G., J. H. Gotway, R. Bullock, E. Gilleland, T. Fowler, D. Ahijevych, and T. Jensen, 2009: The Model Evaluation Tools (MET): Community tools for forecast evaluation. Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 9A.6. [Available online at http://ams.confex.com/ams/pdfpapers/151349.pdf.]

    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807, doi:10.1175/2011WAF2222455.1.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., F. J. LaFontaine, A. L. Molthan, B. T. Zavodsky, and R. A. Rozumalski, 2012: Recent upgrades to NASA SPoRT initialization datasets for the Environmental Modeling System. Preprints, 37th National Weather Association Annual Meeting, Madison, WI, National Weather Association, P1.40. [Available online at www.nwas.org/meetings/nwa2012/extendedabstracts/NWA2012_P1.40_Case_etal.pdf.]

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Haines, S. L., G. J. Jedlovec, and S. M. Lazarus, 2007: A MODIS sea surface temperature composite for regional applications. IEEE Trans. Geosci. Remote Sens., 45, 29192927, doi:10.1109/TGRS.2007.898274.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 26212639, doi:10.1175/1520-0493(1998)126<2621:IOPCSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, K. R., and Coauthors, 2010: Performance analysis of high performance computing applications on the Amazon Web Services cloud. Second Int. Conf. on Cloud Computing Technology and Science (CloudCom), Indianapolis, IN, IEEE, 159–168, doi:10.1109/CloudCom.2010.69.

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jedlovec, G., 2013: Transitioning research satellite data to the operational weather community: The SPoRT paradigm. IEEE Geosci. Remote Sens. Mag., 1, 6266, doi:10.1109/MGRS.2013.2244704.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kirschbaum, D. B., R. Adler, Y. Hong, and A. Lerner-Lam, 2009: Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat. Hazards Earth Syst. Sci., 9, 673686, doi:10.5194/nhess-9-673-2009.

    • Search Google Scholar
    • Export Citation
  • LaCasse, K. M., M. E. Splitt, S. M. Lazarus, and W. M. Lapenta, 2008: The impact of high-resolution sea surface temperatures on short-term model simulations of the nocturnal Florida marine boundary layer. Mon. Wea. Rev., 136, 13491372, doi:10.1175/2007MWR2167.1.

    • Search Google Scholar
    • Export Citation
  • Mell, P., and T. Grance, 2011: The NIST definition of cloud computing: Recommendations of the National Institute of Standards and Technology. NIST Special Publ. 800-145, 7 pp. [Available online at http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.]

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H.-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp. [Available online at www.nws.noaa.gov/om/tpb/484.pdf.]

  • NASA, cited 2014: SERVIR Global: The regional visualization and monitoring system. [Available online at https://servirglobal.net.]

  • Rozumalski, R. A., cited 2014: STRC EMS user guide. NOAA/NWS Forecast Decision Training Branch, COMET/UCAR. [Available online at http://strc.comet.ucar.edu/software/newrems/.]

  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, doi:10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Technical Note NCAR/TN–475+STR, 123 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Zavodsky, B. T., J. L. Case, J. H. Gotway, K. D. White, J. M. Medlin, L. Wood, and D. B. Radell, 2014: Development and implementation of dynamic scripts to support local model verification at National Weather Service Weather Forecast Offices. Proc. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., P500. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper232418.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4303 1920 138
PDF Downloads 1959 299 23