The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean

Andrey Y. Shcherbina University of Washington, Seattle, Washington

Search for other papers by Andrey Y. Shcherbina in
Current site
Google Scholar
PubMed
Close
,
Miles A. Sundermeyer University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Miles A. Sundermeyer in
Current site
Google Scholar
PubMed
Close
,
Eric Kunze Seattle, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
,
Eric D’Asaro University of Washington, Seattle, Washington

Search for other papers by Eric D’Asaro in
Current site
Google Scholar
PubMed
Close
,
Gualtiero Badin University of Hamburg, Hamburg, Germany

Search for other papers by Gualtiero Badin in
Current site
Google Scholar
PubMed
Close
,
Daniel Birch University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Daniel Birch in
Current site
Google Scholar
PubMed
Close
,
Anne-Marie E. G. Brunner-Suzuki University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Anne-Marie E. G. Brunner-Suzuki in
Current site
Google Scholar
PubMed
Close
,
Jörn Callies Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography, Cambridge, Massachusetts

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
,
Brandy T. Kuebel Cervantes Oregon State University, Corvallis, Oregon

Search for other papers by Brandy T. Kuebel Cervantes in
Current site
Google Scholar
PubMed
Close
,
Mariona Claret Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Mariona Claret in
Current site
Google Scholar
PubMed
Close
,
Brian Concannon Naval Air Systems Command, Patuxent River, Maryland

Search for other papers by Brian Concannon in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Early NorthWest Research Associates, Redmond, Washington

Search for other papers by Jeffrey Early in
Current site
Google Scholar
PubMed
Close
,
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
,
Louis Goodman University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Louis Goodman in
Current site
Google Scholar
PubMed
Close
,
Ramsey R. Harcourt University of Washington, Seattle, Washington

Search for other papers by Ramsey R. Harcourt in
Current site
Google Scholar
PubMed
Close
,
Jody M. Klymak University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
,
Craig M. Lee University of Washington, Seattle, Washington

Search for other papers by Craig M. Lee in
Current site
Google Scholar
PubMed
Close
,
M.-Pascale Lelong NorthWest Research Associates, Redmond, Washington

Search for other papers by M.-Pascale Lelong in
Current site
Google Scholar
PubMed
Close
,
Murray D. Levine Oregon State University, Corvallis, Oregon

Search for other papers by Murray D. Levine in
Current site
Google Scholar
PubMed
Close
,
Ren-Chieh Lien University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
,
Amala Mahadevan Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Amala Mahadevan in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
,
Sonaljit Mukherjee University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Sonaljit Mukherjee in
Current site
Google Scholar
PubMed
Close
,
Jonathan D. Nash Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
,
Tamay Özgökmen University of Miami, Miami, Florida

Search for other papers by Tamay Özgökmen in
Current site
Google Scholar
PubMed
Close
,
Stephen D. Pierce Oregon State University, Corvallis, Oregon

Search for other papers by Stephen D. Pierce in
Current site
Google Scholar
PubMed
Close
,
Sanjiv Ramachandran University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Sanjiv Ramachandran in
Current site
Google Scholar
PubMed
Close
,
Roger M. Samelson Oregon State University, Corvallis, Oregon

Search for other papers by Roger M. Samelson in
Current site
Google Scholar
PubMed
Close
,
Thomas B. Sanford University of Washington, Seattle, Washington

Search for other papers by Thomas B. Sanford in
Current site
Google Scholar
PubMed
Close
,
R. Kipp Shearman Oregon State University, Corvallis, Oregon

Search for other papers by R. Kipp Shearman in
Current site
Google Scholar
PubMed
Close
,
Eric D. Skyllingstad Oregon State University, Corvallis, Oregon

Search for other papers by Eric D. Skyllingstad in
Current site
Google Scholar
PubMed
Close
,
K. Shafer Smith New York University, New York, New York

Search for other papers by K. Shafer Smith in
Current site
Google Scholar
PubMed
Close
,
Amit Tandon University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Amit Tandon in
Current site
Google Scholar
PubMed
Close
,
John R. Taylor University of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
,
Eugene A. Terray Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Eugene A. Terray in
Current site
Google Scholar
PubMed
Close
,
Leif N. Thomas Stanford University, Stanford, California

Search for other papers by Leif N. Thomas in
Current site
Google Scholar
PubMed
Close
, and
James R. Ledwell Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by James R. Ledwell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.

CORRESPONDING AUTHOR: Andrey Shcherbina, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105, E-mail: ashcherbina@apl.uw.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00015.2)

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.

CORRESPONDING AUTHOR: Andrey Shcherbina, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105, E-mail: ashcherbina@apl.uw.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00015.2)

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 1.13 MB)
Save
  • Badin, G., A. Tandon, and A. Mahadevan, 2011: Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr., 41, 20802101, doi:10.1175/JPO-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Brunner-Suzuki, A.-E. G., M. A. Sundermeyer, and M.-P. Lelong, 2014: Upscale energy transfer induced by vortical modes and internal waves. J. Phys. Oceanogr., 44, 24462469, doi:10.1175/JPO-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., N. Grisouard, and M. Holmes-Cerfon, 2013: Strong particle dispersion by weakly dissipative random internal waves. J. Fluid Mech., 719, R4, doi:10.1017/jfm.2013.71.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Cole, S. T., and D. L. Rudnick, 2012: The spatial distribution and annual cycle of upper ocean thermohaline structure. J. Geophys. Res., 117, C02027, doi:10.1029/2011JC007033.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, doi:10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eckart, C., 1948: An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res., 7, 265275.

  • Ferrari, R., and D. L. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105, 16 85716 883, doi:10.1029/2000JC900057.

    • Search Google Scholar
    • Export Citation
  • Firing, E., and J. M. Hummon, 2010: Ship-mounted acoustic Doppler current profilers. The GO-SHIP repeat hydrography manual: A collection of expert reports and guidelines, IOCCP Rep. 14 ICPO Publ. 134, 11 pp. [Available online at www.go-ship.org/Manual/Firing_SADCP.pdf.]

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2006: Turbulent dispersion in the ocean. Prog. Oceanogr., 70, 113125, doi:10.1016/j.pocean.2005.07.005.

  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495289, doi:10.1029/JC092iC05p05249.

  • Garrett, C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Haza, A. C., T. M. Özgökmen, A. Griffa, A. C. Poje, and P. Lelong, 2014: How does drifter position uncertainty affect ocean dispersion estimates? J. Atmos. Oceanic Technol., 31, 28092828, doi:10.1175/JTECH-D-14-00107.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. M. Klymak, R.-C. Lien, R. Ferrari, C. M. Lee, M. A. Sundermeyer, and L. Goodman, 2015: Submesoscale water-mass spectra in the Sargasso Sea. J. Phys. Oceanogr., 45, 13251338, doi:10.1175/JPO-D-14-0108.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, doi:10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Müller, 1992: Normal-mode decomposition of small-scale oceanic motions. J. Phys. Oceanogr., 22, 15831595, doi:10.1175/1520-0485(1992)022<1583:NMDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., L. S. Laurent, and A. Naviera Garabato, 2013: Diapycnal mixing processes in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Academic Press, 159–184.

  • Mahadevan, A., 2006: Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14, 222240, doi:10.1016/j.ocemod.2006.05.005.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14, 1577–1589, doi:10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and I. Yavneh, 2001: From stirring to mixing of momentum: Cascades from balanced flows to dissipation in the oceanic interior. From Stirring to Mixing in a Stratified Ocean: Proc. 12th ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 5966.

  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, doi:10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, J. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Montgomery, R. B., 1940: The present evidence on the importance of lateral mixing processes in the ocean. Bull. Amer. Meteor. Soc., 21, 8794.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, doi:10.1175/2008JTECHO617.1.

    • Search Google Scholar
    • Export Citation
  • Müller, P., J. McWilliams, and J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397405.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1976: Remarks on the use of ‘diffusion diagrams’ in modeling scale-dependent diffusion. Deep-Sea Res. Oceanogr. Abstr., 23, 12131214, doi:10.1016/0011-7471(76)90897-4.

    • Search Google Scholar
    • Export Citation
  • Ordonez, C. E., R. K. Shearman, J. A. Barth, P. Welch, A. Erofeev, and Z. Kurokawa, 2012: Obtaining absolute water velocity profiles from glider-mounted acoustic Doppler current profilers. Proc. OCEANS 2012, Yeosu, South Korea, IEEE, doi:10.1109/OCEANS-Yeosu.2012.6263582.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1958: On the calculation of horizontal turbulent diffusion of the pollutant patches in the sea. Dokl. Akad. Nauk SSSR, 120, 761763.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2014: Vortical and internal-wave shear and strain. J. Phys. Oceanogr., 44, 20702092, doi:10.1175/JPO-D-13-090.1.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE/OES, 152154.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., 2006: Local and nonlocal advection of a passive tracer. Phys. Fluids, 18, 116601, doi:10.1063/1.2375020.

  • Shcherbina, A. Y., M. C. Gregg, M. H. Alford, and R. R. Harcourt, 2010: Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 40, 16691689, doi:10.1175/2010JPO4373.1.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. M. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, doi:10.1175/JPO-D-10-05016.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501, doi:10.1175/2009JPO4103.1.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1975: Ocean Circulation Physics.Academic Press, 246 pp.

  • Stommel, H., 1949: Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199225.

  • Sundermeyer, M. A., and J. R. Ledwell, 2001: Lateral dispersion over the continental shelf: Analysis of dye release experiments. J. Geophys. Res., 106, 9603, doi:10.1029/2000JC900138.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., J. R. Ledwell, N. S. Oakey, and B. J. W. Greenan, 2005: Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 12451262, doi:10.1175/JPO2713.1.

    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., E. Skyllingstad, J. R. Ledwell, B. Concannon, E. A. Terray, D. Birch, S. Pierce, and B. Cervantes, 2014: Observations and numerical simulations of large eddy circulation in the ocean surface mixed layer. Geophys. Res. Lett., 41, 75847590, doi:10.1002/2014GL061637.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 1738.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, doi:10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20064 17426 171
PDF Downloads 1625 357 30