How Do Atmospheric Rivers Form?

H. F. Dacre Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by H. F. Dacre in
Current site
Google Scholar
PubMed
Close
,
P. A. Clark Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by P. A. Clark in
Current site
Google Scholar
PubMed
Close
,
O. Martinez-Alvarado Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by O. Martinez-Alvarado in
Current site
Google Scholar
PubMed
Close
,
M. A. Stringer Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by M. A. Stringer in
Current site
Google Scholar
PubMed
Close
, and
D. A. Lavers Iowa Institute of Hydraulic Research–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by D. A. Lavers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The term “atmospheric river” is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this paper, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone’s warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term “atmospheric river”), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.

CORRESPONDING AUTHOR: Helen Dacre, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom, E-mail: h.f.dacre@reading.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Abstract

The term “atmospheric river” is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this paper, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone’s warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term “atmospheric river”), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.

CORRESPONDING AUTHOR: Helen Dacre, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom, E-mail: h.f.dacre@reading.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Save
  • Bader, M. J., and W. T. Roach, 1977: Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc., 103, 269280, doi:10.1002/qj.49710343605.

    • Search Google Scholar
    • Export Citation
  • Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., R. J. Beare, S. E. Belcher, A. R. Brown, and R. S. Plant, 2010: The moist boundary layer under a mid-latitude weather system. Bound.-Layer Meteor., 134, 367386, doi:10.1007/s10546-009-9452-9.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, doi:10.1002/qj.783.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Rain, rainclouds and climate. Quart. J. Roy. Meteor. Soc., 116, 10251051, doi:10.1002/qj.49711649502.

  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99115, doi:10.1175/2008MWR2491.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, doi:10.1002/grl.50105.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., M. K. Hawcroft, M. A. Stringer, and K. I. Hodges, 2012: An extratropical cyclone database: A tool for illustrating cyclone structure and evolution characteristics. Bull. Amer. Meteor. Soc., 93, 14971502, doi:10.1175/BAMS-D-11-00164.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, J., J. Methven, and M. Blackburn, 2015: Evaluation of ERA-Interim reanalysis precipitation products using England and Wales observations. Quart. J. Roy. Meteor. Soc., 141, 798806 doi:10.1002/qj.2395.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, doi:10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and H. F. Dacre, 2006: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 132, 11191137, doi:10.1256/qj.05.69.

    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, and D. E. Waliser, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Hand, W. H., N. I. Fox, and C. G. Collier, 2004: A study of twentieth century extreme rainfall events in the United Kingdom with implications for forecasting. Meteor. Appl., 11, 1531, doi:10.1017/S1350482703001117.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, doi:10.1002/qj.49709942003.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • Hill, F. F., K. A. Browning, and M. J. Bader, 1981: Radar and raingauge observations of orographic rain over south Wales. Quart. J. Roy. Meteor. Soc., 107, 643670, doi:10.1002/qj.49710745312.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., D. E. Waliser, and P. J. Neiman, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465474, doi:10.1007/s00382-012-1322-3.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144, doi:10.1175/WAF963.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, doi:10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, doi:10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2013: Characteristics of landfalling atmospheric rivers inferred from satellite observations over the eastern North Pacific Ocean. Mon. Wea. Rev., 141, 37573768, doi:10.1175/MWR-D-12-00324.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. Hughes, and B. J. Moore, 2013: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, doi:10.1175/MWR-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Rivera, E. R., F. Dominguez, and C. L. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, doi:10.1175/JHM-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and M. N. Nunez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, doi:10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, doi:10.1175/WAF-D-13-00025.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23767 15434 241
PDF Downloads 6245 1182 127