• Baran, A. J., 2007: The impact of cirrus microphysical and macrophysical properties on upwelling far-infrared spectra. Quart. J. Roy. Meteor. Soc., 133, 14251437, doi:10.1002/qj.132.

    • Search Google Scholar
    • Export Citation
  • Bhawar, R., and Coauthors, 2008: Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band. Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207.

    • Search Google Scholar
    • Export Citation
  • Bianchini, G., and L. Palchetti, 2008: Technical note: REFIR-PAD level 1 data analysis and performance characterization. Atmos. Chem. Phys., 8, 38173826, doi:10.5194/acp-8-3817-2008.

    • Search Google Scholar
    • Export Citation
  • Bianchini, G., L. Palchetti, and B. Carli, 2006: A wide-band nadir-sounding spectroradiometer for the characterization of the Earth’s outgoing long-wave radiation. Sensors, Systems, and Next-Generation Satellites X, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6361), doi:10.1117/12.689260.

  • Bianchini, G., L. Palchetti, G. Muscari, I. Fiorucci, P. Di Girolamo, and T. Di Iorio, 2011: Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign. J. Geophys. Res., 116, D02310, doi:10.1029/2010JD014530.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, doi:10.1029/92JD01419.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., R. A. Hanel, V. G. Kunde, and C. Prabhakara, 1970: The infrared interferometer experiment on Nimbus 3. J. Geophys. Res., 75, 58315857, doi:10.1029/JC075i030p05831.

    • Search Google Scholar
    • Export Citation
  • Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache, 2010: A far-infrared radiative closure study in the Arctic: Application to water vapor. J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harries, J., and Coauthors, 2008: The far-infrared Earth. Rev. Geophys., 46, RG4004, doi:10.1029/2007RG000233.

  • Hu, Y. X., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728742, doi:10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lanconelli, C., M. Busetto, E. Dutton, G. König-Langlo, M. Maturilli, R. Sieger, V. Vitale, and T. Yamanouchi, 2011: Polar baseline surface radiation measurements during the International Polar Year 2007–2009. Earth Syst. Sci. Data, 3, 18, doi:10.5194/essd-3-1-2011.

    • Search Google Scholar
    • Export Citation
  • Liuzzi, G., G. Masiello, C. Serio, L. Palchetti, and G. Bianchini, 2014: Validation of H2O continuum absorption models in the wave number range 180-600 cm−1 with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site. Opt. Express, 22, 16 78416 801, doi:10.1364/OE.22.016784.

    • Search Google Scholar
    • Export Citation
  • Masiello, G., C. Serio, F. Esposito, and L. Palchetti, 2012: Validation of line and continuum spectroscopic parameters with measurements of atmospheric emitted spectral radiance from far to mid infrared wave number range. J. Quant. Spectrosc. Radiat. Transfer, 113, 12861299, doi:10.1016/j.jqsrt.2012.01.019.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and Coauthors, 2002: Far-infrared: A frontier in remote sensing of Earth’s climate and energy balance. Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4485), doi:10.1117/12.454247.

  • Mlynczak, M. G., D. G. Johnson, G. E. Bingham, K. W. Jucks, W. A. Traub, L. Gordley, and P. Yang, 2006a: The far-infrared spectroscopy of the troposphere (FIRST) project. Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, G. J. Komar, J. Wang, and T. Kimura, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5659), doi:10.1117/12.579063.

  • Mlynczak, M. G., and Coauthors, 2006b: First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument. Geophys. Res. Lett., 33, L07704, doi:10.1029/2005GL025114.

    • Search Google Scholar
    • Export Citation
  • Palchetti, L., and Coauthors, 2006: Technical note: First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer. Atmos. Chem. Phys., 6, 50255030, doi:10.5194/acp-6-5025-2006.

    • Search Google Scholar
    • Export Citation
  • Palchetti, L., G. Bianchini, B. Carli, U. Cortesi, and S. Del Bianco, 2008a: Measurement of the water vapour vertical profile and of the Earth’s outgoing far infrared flux. Atmos. Chem. Phys., 8, 28852894, doi:10.5194/acp-8-2885-2008.

    • Search Google Scholar
    • Export Citation
  • Palchetti, L., G. Bianchini, and F. Castagnoli, 2008b: Design and characterisation of black-body sources for infrared wide-band Fourier transform spectroscopy. Infrared Phys. Technol., 51, 207215, doi:10.1016/j.infrared.2007.06.001.

    • Search Google Scholar
    • Export Citation
  • Pommereau, J. P., and F. Goutail, 1988: Stratospheric O3 and NO2 observations at the southern polar circle in summer and fall 1988. Geophys. Res. Lett., 15, 895897, doi:10.1029/GL015i008p00895.

    • Search Google Scholar
    • Export Citation
  • Ricaud, P., and Coauthors, 2013: Quality assessment of the first measurements of tropospheric water vapor and temperature by the HAMSTRAD Radiometer over Concordia Station, Antarctica. IEEE Trans. Geosci. Remote Sens., 51, 32173239, doi:10.1109/TGRS.2012.2225627.

    • Search Google Scholar
    • Export Citation
  • Rizzi, R., and Coauthors, 2002: Feasibility of the spaceborne radiation explorer in the far infrared (REFIR). Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4485), doi:10.1117/12.454252.

  • Serio, C., and Coauthors, 2008: Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm−1. Opt. Express, 16, 15 81615 833, doi:10.1364/OE.16.015816.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp, doi:10.1017/CBO9781107415324.

  • Turner, D. D., and E. J. Mlawer, 2010: The radiative heating in underexplored bands campaigns. Bull. Amer. Meteor. Soc., 91, 911923, doi:10.1175/2010BAMS2904.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2012a: Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions. Geophys. Res. Lett., 39, L10801, doi:10.1029/2012GL051542.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., A. Merrelli, D. Vimont, and E. J. Mlawer, 2012b: Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations. J. Geophys. Res., 117, D04106, doi:10.1029/2011JD016440.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2003: Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res., 108, 4569, doi:10.1029/2002JD003291.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 259 9
PDF Downloads 399 198 6

Far-Infrared Radiative Properties of Water Vapor and Clouds in Antarctica

View More View Less
  • 1 Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Florence, Italy
Restricted access

Abstract

Water vapor and clouds are among the most important greenhouse components whose radiative features cover all the broad spectral range of the thermal emission of the atmosphere. Typically more than 40% of the total thermal emission of Earth occurs in the far-infrared (FIR) spectral region from 100 to 667 cm−1 (wavelengths from 100 to 15 µm). Nevertheless, this spectral region has not ever been fully covered down to 100 cm−1 by space missions, and only a few ground-based experiments exist because of the difficulty of performing measurements from high altitude and very dry locations where the atmosphere is sufficiently transparent to observe the FIR emission features. To cover this lack of observations, the Italian experiment “Radiative Properties of Water Vapor and Clouds in Antarctica” has collected a 2-yr dataset of spectral measurements of the radiance emitted by the atmosphere and by clouds, such as cirrus and polar stratospheric clouds, from 100 to 1,400 cm−1 (100–7 µm of wavelength), including the underexplored FIR region, along with polarization-sensitive lidar observations, daily radiosondes, and other ancillary information to characterize the atmosphere above the site. Measurements have been performed almost continuously with a duty cycle of 6 out of 9 h, from the Italian–French base of Concordia at Dome C over the Antarctic Plateau at 3,230 m MSL, in all-sky conditions since 2012. Because of the uniqueness of the observations, this dataset will be extremely valuable for evaluating the accuracy of atmospheric absorption models (both gas and clouds) in the underexplored FIR and to detect possible daily, seasonal, and annual climate signatures.

CORRESPONDING AUTHOR: Luca Palchetti, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy, E-mail: luca.palchetti@ino.it

Abstract

Water vapor and clouds are among the most important greenhouse components whose radiative features cover all the broad spectral range of the thermal emission of the atmosphere. Typically more than 40% of the total thermal emission of Earth occurs in the far-infrared (FIR) spectral region from 100 to 667 cm−1 (wavelengths from 100 to 15 µm). Nevertheless, this spectral region has not ever been fully covered down to 100 cm−1 by space missions, and only a few ground-based experiments exist because of the difficulty of performing measurements from high altitude and very dry locations where the atmosphere is sufficiently transparent to observe the FIR emission features. To cover this lack of observations, the Italian experiment “Radiative Properties of Water Vapor and Clouds in Antarctica” has collected a 2-yr dataset of spectral measurements of the radiance emitted by the atmosphere and by clouds, such as cirrus and polar stratospheric clouds, from 100 to 1,400 cm−1 (100–7 µm of wavelength), including the underexplored FIR region, along with polarization-sensitive lidar observations, daily radiosondes, and other ancillary information to characterize the atmosphere above the site. Measurements have been performed almost continuously with a duty cycle of 6 out of 9 h, from the Italian–French base of Concordia at Dome C over the Antarctic Plateau at 3,230 m MSL, in all-sky conditions since 2012. Because of the uniqueness of the observations, this dataset will be extremely valuable for evaluating the accuracy of atmospheric absorption models (both gas and clouds) in the underexplored FIR and to detect possible daily, seasonal, and annual climate signatures.

CORRESPONDING AUTHOR: Luca Palchetti, Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy, E-mail: luca.palchetti@ino.it
Save