• Aguirre, C., , O. Pizarro, , P. T. Strub, , R. Garreaud, , and J. A. Barth, 2012: Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res., 117, C01006, doi:10.1029/2011JC007379.

    • Search Google Scholar
    • Export Citation
  • Codispoti, L. A., 2010: Interesting times for marine N2O. Science, 327, 13391340, doi:10.1126/science.1184945.

  • Davis, R. E., , C. C. Eriksen, and C. P. Jones, 2003: Autonomous buoyancy driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis 37–58.

  • Escribano, R., , and C. E. Morales, Eds., 2012: Spatial and temporal scales of variability in the coastal upwelling and coastal transition zones off central-southern Chile (35–40°S). Prog. Oceanogr., 92–95, 17, doi:10.1016/j.pocean.2011.07.019.

    • Search Google Scholar
    • Export Citation
  • Fuenzalida, R., , W. Schneider, , J. Garcés-Vargas, , L. Bravo, , and C. Lange, 2009: Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Res. II, 56, 9921003, doi:10.1016/j.dsr2.2008.11.001.

    • Search Google Scholar
    • Export Citation
  • Grantham, B. A., and et al. , 2004: Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749754, doi:10.1038/nature02605.

    • Search Google Scholar
    • Export Citation
  • Hormazabal, S., , V. Combes, , C. E. Morales, , M. A. Correa-Ramirez, , E. Di Lorenzo, , and S. Nuñez, 2013: Intrathermocline eddies in the coastal transition zone off central Chile (31–41°S). J. Geophys. Res., 118, 48114821, doi:10.1002/jgrc.20337.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., , M. Knoll, , T. Paluszkiewicz, , and R. L. Smith, 1991: The Peru Undercurrent: A study in variability. Deep-Sea Res. Part A, 38, S247S271, doi:10.1016/S0198-0149(12)80012-4.

    • Search Google Scholar
    • Export Citation
  • Kamykowski, D., , and S. J. Zentara, 1990: Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Res., 37, 18611874, doi:10.1016/0198-0149(90)90082-7.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., , L. Stramma, , and M. Visbeck, 2008: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr., 77, 331350, doi:10.1016/j.pocean.2007.05.009.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., , A. Körtzinger, , and N. Gruber, 2010: Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2, 199229, doi:10.1146/annurev.marine.010908.163855.

    • Search Google Scholar
    • Export Citation
  • Körtzinger, A., , J. Schimanski, , and U. Send, 2005: High quality oxygen measurements from profiling floats: A promising new technique. J. Atmos. Oceanic Technol., 22, 302308, doi:10.1175/JTECH1701.1.

    • Search Google Scholar
    • Export Citation
  • Lam, L., and et al. , 2009: Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. USA, 106, 47524757, doi:10.1073/pnas.0812444106.

    • Search Google Scholar
    • Export Citation
  • Letelier, J., , O. Pizarro, , and S. Nuñez, 2009: Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res., 114, C12009, doi:10.1029/2008JC005171.

    • Search Google Scholar
    • Export Citation
  • Lipschultz, F., , S. C. Wofsy, , B. B. Ward, , L. A. Codispoti, , G. Friedrich, , and J. W. Elkins, 1990: Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the eastern tropical South Pacific Ocean. Deep Sea-Res. Part A, 37, 15131541, doi:10.1016/0198-0149(90)90060-9.

    • Search Google Scholar
    • Export Citation
  • Llanillo, P. J., , J. L. Pelegrí, , C. M. Duarte, , M. Emelianov, , M. Gasser, , J. Gourrion, , and A. Rodríguez-Santana, 2012: Cambios latitudinales y zonales en los parámetros oceanográficos a lo largo del talud continental en la zona centro y norte de Chile. Cienc. Mar., 38, 307332, doi:10.7773/cm.v38i1B.1814.

    • Search Google Scholar
    • Export Citation
  • Metear, R. J., and A. C. Hirst, 2003: Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochem. Cycles, 17, GB1125, doi:10.1029/2002GB001997.

    • Search Google Scholar
    • Export Citation
  • Najjar, R. G., and et al. , 2007: Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007, doi:10.1029/2006GB002857.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. R., , G. R. Stephenson, , M. E. Inall, , C. Balfour, , A. Düsterhus, , and J. A. M. Green, 2015: Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst., 144, 5769, doi:10.1016/j.jmarsys.2014.11.005.

    • Search Google Scholar
    • Export Citation
  • Paulmier, A., , and D. Ruiz-Pino, 2009: Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr., 80, 113128, doi:10.1016/j.pocean.2008.08.001.

    • Search Google Scholar
    • Export Citation
  • Paulmier, A., , D. Ruiz-Pino, , V. Garçon, , and L. Farías, 2006: Maintaining of the Eastern South Pacific oxygen minimum zone (OMZ) off Chile. Geophys. Res. Lett., 33, L20601, doi:10.1029/2006GL026801.

    • Search Google Scholar
    • Export Citation
  • Pizarro, O., , A. J. Clarke, , and S. Van Gorder, 2001: El Niño sea level and currents along the South American coast: Comparison of observations with theory. J. Phys. Oceanogr., 31, 18911903, doi:10.1175/1520-0485(2001)031<1891:ENOSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pizarro, O., , G. Shaffer, , B. Dewitte, , and M. Ramos, 2002: Dynamics of seasonal and interannual variability of the Peru-Chile Undercurrent. Geophys. Res. Lett., 29, doi:10.1029/2002GL014790.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., , R. E. Davis, , C. C. Eriksen, , D. M. Fratantoni, , and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, doi:10.4031/002533204787522703.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , A. Oschlies, , H. D. Matthews, and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, 22, GB1013, doi:10.1029/2007GB002953.

    • Search Google Scholar
    • Export Citation
  • Shaffer, G., , O. Pizarro, , L. Djurfeldt, , S. Salinas, , and J. Rutllant, 1997: Circulation and low-frequency variability near the Chilean coast: Remotely forced fluctuations during the 1991–92 El Niño. J. Phys. Oceanogr., 27, 217235, doi:10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherman, J., , R. Davis, , W. B. Owens, , and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, doi:10.1109/48.972076.

    • Search Google Scholar
    • Export Citation
  • Siegel, E., , and P. J. Rusello, 2013: Improving ocean current measurement from gliders. Sea Technol., 54, 35.

  • Silva, N., , and S. Neshyba, 1979: On the southernmost extension of the Peru-Chile undercurrent. Deep-Sea Res. Part A, 26, 13871393.

  • Sobarzo, M., , L. Bravo, , D. Donoso, , J. Garcés-Vargas, , and W. Schneider, 2007: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr., 75, 363382, doi:10.1016/j.pocean.2007.08.022.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., , G. C. Johnson, , J. Sprintall, , and V. Mohrholz, 2008: Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655658, doi:10.1126/science.1153847.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , D. L. Rudnick, , M. R. Mazloff, , R. E. Davis, , and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., , T. Kawano, , I. Kaneko, , and M. Fukasawa, 2008: In situ calibration of optode-based oxygen sensors. J. Atmos. Oceanic Technol., 25, 22712281, doi:10.1175/2008JTECHO549.1.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., , R. Lueck, , and L. St. Laurent, 2009: Turbulence measurements from a glider. Marine Technology for Our Future: Global and Local Challenges. MTS/IEEE, 1–6.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 22
PDF Downloads 74 74 12

Underwater Glider Observations in the Oxygen Minimum Zone off Central Chile

View More View Less
  • 1 Department of Geophysics, University of Concepción, Concepción, Chile, Millennium Institute of Oceanography, University of Concepción, Concepción, Chile, and COPAS Sur Austral Program, University of Concepción, Concepción, Chile
  • | 2 Department of Geophysics, University of Concepción, Concepción, Chile, and Millennium Institute of Oceanography, University of Concepción, Concepción, Chile
  • | 3 COPAS Sur Austral Program, University of Concepción, Concepción, Chile, and Facultad de Ciencias del Mar y Recursos Naturales, Universidad de Valparaíso, Valparaíso, Chile
  • | 4 COPAS Sur Austral Program, University of Concepción, Concepción, Chile
  • | 5 Department of Geophysics, University of Concepción, Concepción, Chile, Millennium Institute of Oceanography, University of Concepción, Concepción, Chile, and COPAS Sur Austral Program, University of Concepción, Concepción, Chile
  • | 6 Postgraduate Program in Oceanography, University of Concepción, Concepción, Chile
© Get Permissions
Restricted access

Abstract

Gliders have become an efficient and reliable oceanographic platform for measuring physical and biogeochemical properties of the seawater, and the global glider fleet is rapidly expanding. In Chile, glider observations have been carried out in very different oceanographic environments, from the mild upwelling region of subtropical northern Chile to the channels of southern Patagonia. Herein, we briefly present observations and results obtained in the oxygen minimum zone off Concepcion (∼36°30′S). Many new features have been observed in this region thanks to the relatively high resolution of the glider measurements. Future plans for the glider program include an oceanic time series off central Chile that will contribute to the regional observing system of the ocean and allow evaluations of low-frequency changes like those associated with El Niño and La Niña events.

CORRESPONDING AUTHOR: Oscar Pizarro, Department of Geophysics, Cabina 7, Barrio Universitario s/n, University of Concepcion, Concepcion, Chile, E-mails: opizarro@udec.cl, orpa@profc.udec.cl

Abstract

Gliders have become an efficient and reliable oceanographic platform for measuring physical and biogeochemical properties of the seawater, and the global glider fleet is rapidly expanding. In Chile, glider observations have been carried out in very different oceanographic environments, from the mild upwelling region of subtropical northern Chile to the channels of southern Patagonia. Herein, we briefly present observations and results obtained in the oxygen minimum zone off Concepcion (∼36°30′S). Many new features have been observed in this region thanks to the relatively high resolution of the glider measurements. Future plans for the glider program include an oceanic time series off central Chile that will contribute to the regional observing system of the ocean and allow evaluations of low-frequency changes like those associated with El Niño and La Niña events.

CORRESPONDING AUTHOR: Oscar Pizarro, Department of Geophysics, Cabina 7, Barrio Universitario s/n, University of Concepcion, Concepcion, Chile, E-mails: opizarro@udec.cl, orpa@profc.udec.cl
Save