• Allard, R. A., and et al. , 2012: Validation test report for the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) version 5.0: Ocean/wave component validation. Naval Research Laboratory Rep. NRL/MR/7320–12-9423, 101 pp. [Available online at www.dtic.mil/dtic/tr/fulltext/u2/a577284.pdf.]

  • Alling, A. K., , E. M. Dorsey, , and J. C. D. Gordon, 1991: Blue whales (Balaenoptera musculus) off the northeast coast of Sri Lanka: Distribution, feeding and individual identification. Cetaceans and Cetacean Research in the Indian Ocean Sanctuary, UNEP Marine Mammal Technical Rep. 3, 247–258.

  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Antony, M. K., , C. S. Murty, , G. V. Reddy, , and K. H. Rao, 1985: Sub-surface temperature oscillations and associated flow in the western Bay of Bengal. Estuarine Coastal Shelf Sci., 21, 823834, doi:10.1016/0272-7714(85)90076-9.

    • Search Google Scholar
    • Export Citation
  • Arobone, E., , and S. Sarkar, 2015: Effects of three-dimensionality on instability and turbulence in a frontal zone. J. Fluid Mech., 784, 252273, doi:10.1017/jfm.2015.564.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and et al. , 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82, 22172243, doi:10.1175/1520-0477(2001)082<2217:BTBOBM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., , R. Ferrari, , and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Booij, N., , R. C. Ris, , and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions. Part I: Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and et al. , 2003: COAMPS version 3 model description general theory and equations. Naval Research Laboratory Rep. NRL/PU/7500-03-448, 143 pp.

  • Chen, S., and et al. , 2015: A study of CINDY/DYNAMO MJO suppressed phase. J. Atmos. Sci., 72, 37553779, doi:10.1175/JAS-D-13-0348.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., , S. P. Xie, , J. P. McCreary, , Y. Qi, , and Y. Du, 2013: Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 816830, doi:10.1002/jgrc.20075.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., , C. Lee, , L. Rainville, , L. Thomas, , and R. Harcourt, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • De Silva, I. P. D., , A. Brandt, , L. J. Montenegro, , and H. J. Fernando, 1999: Gradient Richardson number measurements in a stratified shear layer. Dyn. Atmos. Oceans, 30, 4763, doi:10.1016/S0377-0265(99)00015-9.

    • Search Google Scholar
    • Export Citation
  • Durand, F., , D. Shankar, , F. Birol, , and S. S. C. Shenoi, 2009: Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res., 114, C02013, doi:10.1029/2008JC004807.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., , R. Ferrari, , and B. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, doi:10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., , M. Ravichandran, , and M. J. McPhaden, 2013: Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 24262437, doi:10.1002/jgrc.20192.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., , C. F. Giulivi, , C. L. Lee, , H. H. Furey, , A. Bower, , and L. Talley, 2002: Japan/East Sea intrathermocline eddies. J. Phys. Oceanogr., 32, 19601974, doi:10.1175/1520-0485(2002)032<1960:JESIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. R., 2007: Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112, C11012, doi:10.1029/2007JC004220.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 2001: Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model. Geophys. Res. Lett., 28, 39673970, doi:10.1029/2001GL013422.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 2003: Cross-equatorial pathways of salt and tracers from the north Indian Ocean: Modelling results. Deep-Sea Res. II, 50, 21112127, doi:10.1016/S0967-0645(03)00048-1.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., , T. Shinoda, , S. Chen, , and M. Flatau, 2015: Ocean response to CINDY/DYNAMO MJOs in air-sea-coupled COAMPS. J. Meteor. Soc. Japan, 93A, 157178, doi:10.2151/jmsj.2015-049.

    • Search Google Scholar
    • Export Citation
  • Kurien, P., , M. Ikeda, , and V. K. Valsala, 2010: Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations. J. Oceanogr., 66, 273289, doi:10.1007/s10872-010-0024-x.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., , R. Schmitt, , J. Schanze, , and H. Y. Kao, 2010: The ocean and the global water cycle. Oceanography, 23, 8293, doi:10.5670/oceanog.2010.07.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., , C. A. Paulson, , and J. H. Morison, 1987: Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res., 92, 779782, doi:10.1029/JC092iC01p00779.

    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and et al. , 2014: Mixing to monsoons: Air-sea interactions in the Bay of Bengal. Eos, Trans. Amer. Geophys. Union, 95, 269270, doi:10.1002/2014EO300001.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., , and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., , E. D’Asaro, , C. Lee, , and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, doi:10.1126/science.1218740.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 2000: Description of the Navy Coastal Ocean Model version 1.0. Naval Research Laboratory Rep. NRL/FR/7322/00/9962, 45 pp. [Available from Naval Research Laboratory, Code 7322, Bldg. 1009, Stennis Space Center, MS 39529–5004.]

  • McCreary, J. P., , W. Han, , D. Shankar, , and S. R. Shetye, 1996: Dynamics of the East India Coastal Current: 2. Numerical solutions. J. Geophys. Res., 101, 13 99314 010, doi:10.1029/96JC00560.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and et al. , 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, doi:10.1175/2008JTECHO617.1.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., and et al. , 2014: Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope. J. Earth Syst. Sci., 123, 11971232, doi:10.1007/s12040-014-0471-7.

    • Search Google Scholar
    • Export Citation
  • Murty, V. S. N., , Y. V. B. Sarma, , D. P. Rao, , and C. S. Murty, 1992: Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res., 50, 207228, doi:10.1357/002224092784797700.

    • Search Google Scholar
    • Export Citation
  • Murty, V. S. N., , Y. V. B. Sarma, , and D. P. Rao, 1996: Variability of the oceanic boundary layer characteristics in the northern Bay of Bengal during MONTBLEX-90. Proc. Indian Acad. Sci., 105, 4161. [Available online at http://drs.nio.org/drs/handle/2264/2261.]

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001: The World Ocean surface circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 193–204.

  • Osborne, A. R., , and T. L. Burch, 1980: Internal solitons in the Andaman Sea. Science, 208, 451460, doi:10.1126/science.208.4443.451.

  • Perry, R. B., , and G. R. Schimke, 1965: Large-amplitude internal waves observed off the northwest coast of Sumatra. J. Geophys. Res., 70, 23192324, doi:10.1029/JZ070i010p02319.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., , S. Sarkar, , and K. B. Winters, 2013: Large-eddy simulation of deep-cycle turbulence in an Equatorial Undercurrent model. J. Phys. Oceanogr., 43, 24902502, doi:10.1175/JPO-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , M. A. Goldin, , J. A. Smith, , O. M. Sun, , A. A. Aja, , M. N. Bui, , and T. Hughen, 2011: The wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28, 426435, doi:10.1175/2010JTECHO805.1.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., , M. E. Luther, , and J. J. O’Brien, 1991: The seasonal circulation of the upper ocean in the Bay of Bengal. J. Geophys. Res., 96, 12 66712 683, doi:10.1029/91JC01045.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. Pinkel, 2001: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. Oceanic Technol., 18, 10481051, doi:10.1175/1520-0426(2001)018<1048:WAAWPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., , A. Tandon, , and A. Mahadevan, 2014: Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans, 119, 84958511, doi:10.1002/2014JC010211.

    • Search Google Scholar
    • Export Citation
  • Rao, R. R., , and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, doi:10.1029/2001JC000907.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., , and Coauthors, 2011: Modulation of SST, SSS over northern Bay of Bengal on ISO time scale. J. Geophys. Res., 116, C09026, doi:10.1029/2010JC006804.

    • Search Google Scholar
    • Export Citation
  • Schott, F., , and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Schott, F., , J. Reppin, , and J. Fisher, 1994: Currents and transports of the Monsoon Current south of Sri Lanka. J. Geophys. Res., 99, 25 12725 141, doi:10.1029/94JC02216.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., , B. N. Goswami, , and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, doi:10.1029/2001GL013587.

    • Search Google Scholar
    • Export Citation
  • Shankar, D., , P. N. Vinayachandran, , and A. S. Unnikrishnan, 2002: The monsoon currents in the north Indian Ocean. Prog. Oceanogr., 52, 63120, doi:10.1016/S0079-6611(02)00024-1.

    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., , D. Shankar, , and S. R. Shetye, 2002: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res., 107, 3052, doi:10.1029/2000JC000679.

    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., , A. D. Gouveia, , D. Shankar, , S. S. C. Shenot, , P. N. Vinayachandran, , D. Sundar, , G. S. Michael, , and G. Nampoothiri, 1996: Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J. Geophys. Res., 101, 14 01114 025, doi:10.1029/95JC03307.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., , and H. J. S. Fernando, 2001: Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349386, doi:10.1017/S0022112000002706.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., , S. S. C. Shenoi, , J. P. McCreary, , D. Shankar, , F. Durand, , V. Fernando, , and S. R. Shetye, 2009: Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden–Julian oscillation. Geophys. Res. Lett., 36, L14606, doi:10.1029/2009GL038450.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., , Y. Masurnoto, , T. Mikawa, , and T. Yarnagata, 1999: Intrusion of the Southwest Monsoon Current into the Bay of Bengal. J. Geophys. Res., 104, 11 07711 085, doi:10.1029/1999JC900035.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., , V. S. N. Murty, , and V. Ramesh Babu, 2002: Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res., 107, 8018, doi:10.1029/2001JC000831.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., , D. Shankar, , S. Vernekar, , K. K. Sandeep, , P. Amol, , C. P. Neema, , and A. Chatterjee, 2013: A summer monsoon pump to keep the Bay of Bengal salty. Geophys. Res. Lett., 40, 17771782, doi:10.1002/grl.50274.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907, doi:10.1175/1520-0469(1968)025<0900:OEOKWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and et al. , 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, doi:10.1175/BAMS-83-11-1603.

  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wijeratne, E. M. S., , P. L. Woodworth, , and D. T. Pugh, 2010: Meteorological and internal wave forcing of seiches along the Sri Lanka coast. J. Geophys. Res., 115, C03014, doi:10.1029/2009JC005673.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and et al. , 2015: Southern Bay of Bengal currents and salinity intrusions during the northeast monsoon. J. Geophys. Res. Oceans, 120, 68976913, doi:10.1002/2015JC010744.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., , M. Fujiwara, , T. Horinouchi, , H. Hashiguchi, , and S. Fukao, 2003: Kelvin-Helmholtz instability around the tropical tropopause observed with the equatorial atmosphere radar. Geophys. Res. Lett., 30, 1476, doi:10.1029/2002GL016685.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and M. J. McPhaden, 2011: Ocean preconditioning of Cyclone Nargis in the Bay of Bengal: Interaction between Rossby waves, surface fresh waters, and sea surface temperatures. J. Phys. Oceanogr., 41, 17411755, doi:10.1175/2011JPO4437.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , J. J. O’Brien, , and J. Yang, 1991: On the remote forcing of the circulation in the Bay of Bengal. J. Geophys. Res., 96, 20 44920 454, doi:10.1029/91JC02424.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 400 51
PDF Downloads 210 210 39

ASIRI: An Ocean–Atmosphere Initiative for Bay of Bengal

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 Oregon State University, Corvallis, Oregon
  • | 3 University of Massachusetts Dartmouth, Dartmouth, Massachusetts
  • | 4 Indian National Centre for Ocean Information Systems, Hyderabad, India
  • | 5 Indian Institute of Science, Bangalore, India
  • | 6 National Aquatic Resources Research and Development Agency, Colombo, Sri Lanka
  • | 7 University of Notre Dame, Notre Dame, Indiana
  • | 8 Space Applications Centre, Ahmedabad, India
  • | 9 National Aquatic Resources Research and Development Agency, Colombo, Sri Lanka
  • | 10 Indian Institute of Science, Bangalore, India
  • | 11 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 12 University of Massachusetts Dartmouth, Dartmouth, Massachusetts
  • | 13 Scripps Institution of Oceanography, La Jolla, California
  • | 14 University of Notre Dame, Notre Dame, Indiana
  • | 15 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 16 Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York
  • | 17 Scripps Institution of Oceanography, La Jolla, California
  • | 18 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 19 Scripps Institution of Oceanography, La Jolla, California
  • | 20 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 21 University of Notre Dame, Notre Dame, Indiana
  • | 22 Scripps Institution of Oceanography, La Jolla, California
  • | 23 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 24 Oregon State University, Corvallis, Oregon
  • | 25 University of Rhode Island, Narragansett, Rhode Island
  • | 26 Scripps Institution of Oceanography, La Jolla, California
  • | 27 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 28 University of Massachusetts Dartmouth, Dartmouth, Massachusetts
  • | 29 Scripps Institution of Oceanography, La Jolla, California
  • | 30 Space Applications Centre, Ahmedabad, India
  • | 31 University of Alaska Fairbanks, Fairbanks, Alaska
  • | 32 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 33 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 34 Colorado State University, Ft. Collins, Colorado
  • | 35 National Institute of Ocean Technology, Chennai, India
  • | 36 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 37 Scripps Institution of Oceanography, La Jolla, California
  • | 38 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 39 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

CORRESPONDING AUTHOR: Hemantha Wijesekera, Naval Research Laboratory, Stennis Space Center, MS 39529, E-mail: hemantha.wijesekera@nrlssc.navy.mil

Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

CORRESPONDING AUTHOR: Hemantha Wijesekera, Naval Research Laboratory, Stennis Space Center, MS 39529, E-mail: hemantha.wijesekera@nrlssc.navy.mil
Save