• Aalto, J., and et al. , 2014: New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences, 11, 13311344, doi:10.5194/bg-11-1331-2014.

    • Search Google Scholar
    • Export Citation
  • Aalto, J., and et al. , 2015: Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts. Plant Cell Environ., 38, 22992312, doi:10.1111/pce.12550.

    • Search Google Scholar
    • Export Citation
  • Aaltonen, H., , J. Pumpanen, , M. Pihlatie, , H. Hakola, , H. Hellén, , L. Kulmala, , T. Vesala, , and J. Bäck, 2011: Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric. For. Meteor., 151, 682691, doi:10.1016/j.agrformet.2010.12.010.

    • Search Google Scholar
    • Export Citation
  • Ahmad, I., and et al. , 2013: Long-term measurements of cloud droplet concentrations and aerosol–cloud interactions in continental boundary layer clouds. Tellus, 65B, 20138, doi:10.3402/tellusb.v65i0.20138.

    • Search Google Scholar
    • Export Citation
  • Almeida, J., and et al. , 2013: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 502, 359363, doi:10.1038/nature12663.

    • Search Google Scholar
    • Export Citation
  • Althausen, D., , R. Engelmann, , H. Baars, , B. Heese, , A. Ansmann, , D. Müller, , and M. Komppula, 2009: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Oceanic Technol., 26, 23662378, doi:10.1175/2009JTECHA1304.1.

    • Search Google Scholar
    • Export Citation
  • ARM, 2015: ARM data archive. ARM Climate Research Facility, accessed 22 October 2015. [Available online at www.archive.arm.gov/armlogin/login.jsp.]

  • Atkinson, R., , and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ., 37, 197219, doi:10.1016/S1352-2310(03)00391-1.

    • Search Google Scholar
    • Export Citation
  • Bäck, J., , J. Aalto, , M. Henriksson, , H. Hakola, , Q. He, , and M. Boy, 2012: Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeosciences, 9, 689702, doi:10.5194/bg-9-689-2012.

    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., , T. M. Dunbar, , E. G. Nemitz, , C. R. Wood, , M. W. Gallagher, , F. Davies, , E. O’Connor, , and R. M. Harrison, 2011: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys., 11, 21112125, doi:10.5194/acp-11-2111-2011.

    • Search Google Scholar
    • Export Citation
  • Binietoglou, I., and et al. , 2015: A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos. Meas. Tech., 8, 35773600, doi:10.5194/amt-8-3577-2015.

    • Search Google Scholar
    • Export Citation
  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, doi:10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Boy, M., , A. Sogachev, , J. Lauros, , L. Zhou, , A. Guenther, , and S. Smolander, 2011: SOSA—A new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL—Part 1: Model description and initial evaluation. Atmos. Chem. Phys., 11, 4351, doi:10.5194/acp-11-43-2011.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , K. Ikeda, , G. Zhang, , M. Schönhuber, , and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and et al. , 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, doi:10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Chaikovsky, A., and et al. , 2016: Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET, Atmos. Meas. Tech., 9, 11811205, doi:10.5194/amt-9-1181-2016.

    • Search Google Scholar
    • Export Citation
  • Dal Maso, M., , M. Kulmala, , I. Riipinen, , R. Wagner, , T. Hussein, , P. P. Aalto, , and K. E. J. Lehtinen, 2005: Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res., 10, 323336.

    • Search Google Scholar
    • Export Citation
  • Dal Maso, M., , P. Hari, , and M. Kulmala, 2009: Spring recovery of photosynthesis and atmospheric particle formation. Boreal Environ. Res., 14, 711721.

    • Search Google Scholar
    • Export Citation
  • DeCarlo, P.F., and et al. , 2006: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem., 78, 82818289, doi:10.1021/ac061249n.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ehn, M., and et al. , 2010: Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys., 10, 85138530, doi:10.5194/acp-10-8513-2010.

    • Search Google Scholar
    • Export Citation
  • Ehn, M., and et al. , 2014: A large source of low-volatility secondary organic aerosol. Nature, 506, 476479, doi:10.1038/nature13032.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., , K. Schäfer, , and C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height—A review. Meteor. Z., 17, 621630, doi:10.1127/0941-2948/2008/0312.

    • Search Google Scholar
    • Export Citation
  • Engelmann, R., and et al. , 2016: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation. Atmos. Meas. Tech., 9, 17671784, doi:10.5194/amt-9-1767-2016.

    • Search Google Scholar
    • Export Citation
  • Epstein, H. E., , I. Myers-Smith, , and D. A. Walker, 2013: Recent dynamics of arctic and sub-arctic vegetation. Environ. Res. Lett., 8, 015040, doi:10.1088/1748-9326/8/1/015040.

    • Search Google Scholar
    • Export Citation
  • Ghirardo, A., , K. Koch, , R. Taipale, , I. Zimmer, , J.-P. Schnitzler, , and J. Rinne, 2010: Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant Cell Environ., 33, 781792, doi:10.1111/j.1365-3040.2009.02104.x.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., and et al. , 1995: A global model of natural volatile organic compound emission. J. Geophys. Res., 100, 88738892, doi:10.1029/94JD02950.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S. A. K., and et al. , 2012: Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland. Atmos. Chem. Phys., 12, 10 77110 786, doi:10.5194/acp-12-10771-2012.

    • Search Google Scholar
    • Export Citation
  • Hakola, H., , V. Tarvainen, , J. Bäck, , H. Ranta, , B. Bonn, , J. Rinne, , and M. Kulmala, 2006: Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosciences, 3, 93101, doi:10.5194/bg-3-93-2006.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Hari, P., , and M. Kulmala, 2005: Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II). Boreal Environ. Res., 10, 315322.

  • Huang, G.-J., , V. N. Bringi, , R. Cifelli, , D. Hudak, , and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., , V. N. Bringi, , D. Moisseev, , W. A. Petersen, , L. Bliven, , and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res., 153, 3448, doi:10.1016/j.atmosres.2014.07.013.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and et al. , 2007: CLOUDNET: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • Jefferson, A., 2011: Aerosol Observing System (AOS) handbook. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Tech. Rep. DOE/SC-ARM/TR-014, 32 pp.

  • Jimenez, J. L., and et al. , 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 15251529, doi:10.1126/science.1180353.

    • Search Google Scholar
    • Export Citation
  • Jokinen, T., and et al. , 2012: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys., 12, 41174125, doi:10.5194/acp-12-4117-2012.

    • Search Google Scholar
    • Export Citation
  • Junninen, H., , A. Lauri, , P. Keronen, , P. Aalto, , V. Hiltunen, , P. Hari, , and M. Kulmala, 2009: Smart-SMEAR: on-line data exploration and visualization tool for SMEAR stations. Boreal Environ. Res., 14, 447457.

    • Search Google Scholar
    • Export Citation
  • Junninen, H., and et al. , 2010: A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech., 3, 10391053, doi:10.5194/amt-3-1039-2010.

    • Search Google Scholar
    • Export Citation
  • Kauppi, P., , P. Anttila, , and K. Kenttämies, Eds., 1990: Acidification in Finland. Springler-Verlag, 1237 pp.

  • Kerminen, V.-M., , H. Lihavainen, , M. Komppula, , Y. Viisanen, , and M. Kulmala, 2005: Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophys. Res. Lett., 32, L14803, doi:10.1029/2005GL023130.

    • Search Google Scholar
    • Export Citation
  • Kerminen, V.-M., and et al. , 2012: Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys., 12, 12 03712 059, doi:10.5194/acp-12-12037-2012.

    • Search Google Scholar
    • Export Citation
  • Kirkby, J., and et al. , 2011: Role of sulfuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429433, doi:10.1038/nature10343.

    • Search Google Scholar
    • Export Citation
  • Kirkby, J., and et al. , 2016: Ion-induced nucleation of pure biogenic particles. Nature, 533, 521526, doi:10.1038/nature17953.

  • Kneifel, S., , A. von Lerber, , J. Tiira, , D. Moisseev, , P. Kollias, , and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, doi:10.1002/2015JD023156.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., , L. Brodeau, , R. G. Graversen, , J. Karlsson, , G. Svensson, , M. Tjernström, , U. Willén, , and K. Wyser, 2013: Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dyn., 40, 27192743, doi:10.1007/s00382-012-1505-y.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., , A. Toivonen, , J. M. Mäkelä, , and A. Laaksonen, 1998: Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus, 50B, 449462, doi:10.1034/j.1600-0889.1998.t01-4-00004.x.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and et al. , 2001: On the formation, growth and composition of nucleation mode particles. Tellus, 53B, 479490, doi:10.3402/tellusb.v53i4.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., , H. Vehkamäki, , T. Petäjä, , M. Dal Maso, , A. Lauri, , V.-M. Kerminen, , W. Birmili, , and P. H. McMurry, 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci., 35, 143176, doi:10.1016/j.jaerosci.2003.10.003.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and et al. , 2007: Toward direct measurement of atmospheric nucleation. Science, 318, 8992, doi:10.1126/science.1144124.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., , A. Arola, , T. Nieminen, , L. Riuttanen, , L. Sogacheva, , G. de Leeuw, , V.-M. Kerminen, , and K. E. J. Lehtinen, 2011: First estimates of global nucleation mode aerosol concentrations based on satellite measurements. Atmos. Chem. Phys., 11, 10 79110 801, doi:10.5194/acp-11-10791-2011.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and et al. , 2013: Direct observations of atmospheric aerosol nucleation. Science, 339, 943946, doi:10.1126/science.1227385.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and et al. , 2014: CO2 induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environ. Res., 19B, 122131.

    • Search Google Scholar
    • Export Citation
  • Lopatin, A., , O. Dubovik, , A. Chaikovsky, , P. Goloub, , T. Lapyonok, , D. Tanré, , and P. Litvinov, 2013: Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Tech., 6, 20652088, doi:10.5194/amt-6-2065-2013.

    • Search Google Scholar
    • Export Citation
  • Lopez-Hilfiker, F. D., and et al. , 2014: A novel method for online analysis of gas and particle composition: Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech., 7, 9831001, doi:10.5194/amt-7-983-2014.

    • Search Google Scholar
    • Export Citation
  • Mäkelä, J., and et al. , 1997: Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett., 24, 12191222, doi:10.1029/97GL00920.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1971: The Physics of Clouds. 2nd ed. Clarendon Press, 671 pp.

  • Mattis, I., , A. Ansmann, , D. Müller, , U. Wandinger, , and D. Althausen, 2004: Multilayer aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET. J. Geophys. Res., 109, D13203, doi:10.1029/2004JD004600.

    • Search Google Scholar
    • Export Citation
  • Merikanto, J., , D. V. Spracklen, , G. W. Mann, , S. J. Pickering, , and K. S. Carslaw, 2009: Impact of nucleation on global CCN. Atmos. Chem. Phys., 9, 86018616, doi:10.5194/acp-9-8601-2009.

    • Search Google Scholar
    • Export Citation
  • Mikkonen, S., and et al. , 2011: A statistical proxy for sulphuric acid concentration. Atmos. Chem. Phys., 11, 11 31911 334, doi:10.5194/acp-11-11319-2011.

    • Search Google Scholar
    • Export Citation
  • Mona, L., , A. Amodeo, , G. D’Amico, , A. Giunta, , F. Madonna, , and G. Pappalardo, 2012: Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy. Atmos. Chem. Phys., 12, 22292244, doi:10.5194/acp-12-2229-2012.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , U. Wandinger, , and A. Ansmann, 1999: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. Appl. Opt., 38, 23462357, doi:10.1364/AO.38.002346.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , A. Ansmann, , I. Mattis, , M. Tesche, , U. Wandinger, , D. Althausen, , and G. Pisani, 2007: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112, D16202, doi:10.1029/2006JD008292.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., , P. A. Kucera, , and L. F. Bliven, 2009: Presenting the Snowflake Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, doi:10.1175/2008JTECHA1148.1.

    • Search Google Scholar
    • Export Citation
  • Ng, N. L., and et al. , 2011: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci. Technol., 45, 780794, doi:10.1080/02786826.2011.560211.

    • Search Google Scholar
    • Export Citation
  • Nygren, P., , P. Hari, , T. Raunemaa, , M. Kulmala, , S. Luokkanen, , M. Holmberg, , and E. Nikinmaa, 1994: Behaviour of 137Cs from Chernobyl fallout in a Scots pine canopy in southern Finland. Can. J. For. Res., 24, 12101215, doi:10.1139/x94-159.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., , R. J. Hogan, , and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, doi:10.1175/JAM-2181.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., , A. J. Illingworth, , I. M. Brooks, , C. D. Westbrook, , R. J. Hogan, , F. Davies, , and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 16521664, doi:10.1175/2010JTECHA1455.1.

    • Search Google Scholar
    • Export Citation
  • Paasonen, P., and et al. , 2013: Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci., 6, 438442, doi:10.1038/ngeo1800.

    • Search Google Scholar
    • Export Citation
  • Pappalardo, G., and et al. , 2014: EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech., 7, 23892409, doi:10.5194/amt-7-2389-2014.

    • Search Google Scholar
    • Export Citation
  • Petäjä, T., 2013: Science plan: Biogenic Aerosols—Effects on Clouds and Climate (BAECC). U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Tech. Rep. DOE/SC-ARM-13–024, 36 pp.

  • Petäjä, T., and et al. , 2009: Sulfuric acid and OH concentrations in a boreal forest site. Atmos. Chem. Phys., 9, 74357448, doi:10.5194/acp-9-7435-2009.

    • Search Google Scholar
    • Export Citation
  • Petäjä, T., and et al. , 2011: Experimental observation of strongly bound dimers of sulfuric acid: Application to nucleation in the atmosphere. Phys. Rev. Lett., 106, 228302, doi:10.1103/PhysRevLett.106.228302.

    • Search Google Scholar
    • Export Citation
  • Pinterich, T., and et al. , 2016: The versatile size analyzing nuclei counter (vSANC). Aerosol Sci. Technol., 50, 947958, doi:10.1080/02786826.2016.1210783.

    • Search Google Scholar
    • Export Citation
  • Power, B. A., , P. W. Summers, , and J. D’Avignon, 1964: Snow crystal forms and riming effects as related to snowfall density and general storm conditions. J. Atmos. Sci., 21, 300305, doi:10.1175/1520-0469(1964)021<0300:SCFARE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Raunemaa, T., , S. Lehtinen, , H. Saari, , and M. Kulmala, 1987: 2–10 μm sized hot particles in Chernobyl fallout to Finland. J. Aerosol Sci., 18, 693696, doi:10.1016/0021-8502(87)90099-1.

    • Search Google Scholar
    • Export Citation
  • Ren, L., , P. Arkin, , T. M. Smith, , and S. S. Shen, 2013: Global precipitation trends in 1900–2005 from a reconstruction and coupled model simulations. J. Geophys. Res. Atmos., 118, 16791689, doi:10.1002/jgrd.50212.

    • Search Google Scholar
    • Export Citation
  • Riccobono, F., and et al. , 2014: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 344, 717721, doi:10.1126/science.1243527.

    • Search Google Scholar
    • Export Citation
  • Riipinen, I., and et al. , 2011: Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys., 11, 38653878, doi:10.5194/acp-11-3865-2011.

    • Search Google Scholar
    • Export Citation
  • Riipinen, I., , T. Yli-Juuti, , J. R. Pierce, , T. Petäjä, , D. R. Worsnop, , M. Kulmala, , and N. M. Donahue, 2012: The contribution of organics to atmospheric nanoparticle growth. Nat. Geosci., 5, 453458, doi:10.1038/ngeo1499.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , U. Lohmann, , G. B. Raga, , C. D. O’Dowd, , M. Kulmala, , S. Fuzzi, , A. Reissell, , and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Schobesberger, S., and et al. , 2013a: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl. Acad. Sci. USA, 110, 17 22317 228, doi:10.1073/pnas.1306973110.

    • Search Google Scholar
    • Export Citation
  • Schobesberger, S., and et al. , 2013b: Airborne measurements over the boreal forest of southern Finland during new particle formation events in 2009 and 2010. Boreal Environ. Res., 18, 145163.

    • Search Google Scholar
    • Export Citation
  • Sipilä, M., and et al. , 2010: The role of sulfuric acid in atmospheric nucleation. Science, 327, 12431246, doi:10.1126/science.1180315.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • smartSMEAR, 2016: SMEAR data archive. Accessed 27 August 2016. [Available online at www.atm.helsinki.fi/smartSMEAR/.]

  • Smith, J. N., , K. Moore, , P. McMurry, , and F. Eisele, 2004: Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol., 38, 100110, doi:10.1080/02786820490249036.

    • Search Google Scholar
    • Export Citation
  • Smith, J. N., , M. J. Dunn, , T. M. VanReken, , K. Iida, , M. R. Stolzenburg, , P. H. McMurry, , and L. G. Huey, 2008: Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth. Geophys. Res. Lett., 35, L04808, doi:10.1029/2007GL032523.

    • Search Google Scholar
    • Export Citation
  • Smith, J. N., and et al. , 2010: Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. USA, 107, 66346639, doi:10.1073/pnas.0912127107.

    • Search Google Scholar
    • Export Citation
  • Sporre, M.K., , E. J. O’Connor, , N. Håkansson, , A. Thoss, , E. Swietlicki, and T. Petäjä, 2016: Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland. Atmos. Meas. Technol., 9, 31933203, doi:10.5194/amt-9-3193-2016.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , A. Beljaars, , S. Bordoni, , C. Holloway, , M. Köhler, , S. Krueger, , V. Savic-Jovcic, , and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regimes of the northeast Pacific. Mon. Wea. Rev., 135, 9851005, doi:10.1175/MWR3427.1.

    • Search Google Scholar
    • Export Citation
  • Taipale, R., and et al. , 2014: New instrument for measuring atmospheric concentrations of non-OH oxidants of SO2. Boreal Environ Res., 19, 5570.

    • Search Google Scholar
    • Export Citation
  • Tröstl, J., and et al. , 2016: The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 533, 527533, doi:10.1038/nature18271.

    • Search Google Scholar
    • Export Citation
  • Tunved, P., and et al. , 2006: High natural aerosol loading over boreal forests. Science, 312, 261263, doi:10.1126/science.1123052.

    • Search Google Scholar
    • Export Citation
  • Vakkari, V., , E. J. O’Connor, , A. Nisantzi, , R. E. Mamouri, , and D. G. Hadjimitsis, 2015: Low-level mixing height detection in coastal locations with a scanning Doppler lidar. Atmos. Meas. Tech., 8, 18751885, doi:10.5194/amt-8-1875-2015.

    • Search Google Scholar
    • Export Citation
  • Vanhanen, J., , J. Mikkilä, , K. Lehtipalo, , M. Sipilä, , H. E. Manninen, , E. Siivola, , T. Petäjä, , and M. Kulmala, 2011: Particle size magnifier for nano-CN detection. Aerosol Sci. Technol., 45, 533542, doi:10.1080/02786826.2010.547889.

    • Search Google Scholar
    • Export Citation
  • Veselovskii, I., , A. Kolgotin, , D. Müller, , and D. N. Whiteman, 2005: Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. Appl. Opt., 44, 52925303, doi:10.1364/AO.44.005292.

    • Search Google Scholar
    • Export Citation
  • Virtanen, A., and et al. , 2011: Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmos. Chem. Phys., 11, 87598766, doi:10.5194/acp-11-8759-2011.

    • Search Google Scholar
    • Export Citation
  • Weber, R. J., , P. H. McMurry, , F. L. Eisele, , and D. J. Tanner, 1995: Measurement of expected nucleation precursor species and 3-500-nm diameter particles at Mauna Loa Observatory, Hawaii. J. Atmos. Sci., 52, 22422257, doi:10.1175/1520-0469(1995)052<2242:MOENPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yassaa, N., , W. Song, , J. Lelieveld, , A. Vanhatalo, , J. Bäck, , and J. Williams, 2012: Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in boreal forest ambient air during HUMPPA-COPEC-2010. Atmos. Chem. Phys., 12, 72157229, doi:10.5194/acp-12-7215-2012.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , T. Nieminen, , D. Mogensen, , S. Smolander, , A. Rusanen, , M. Kulmala, , and M. Boy, 2014: SOSAA—A new model to simulate the concentrations of organic vapours, sulphuric acid and aerosols inside the ABL—Part 2: Aerosol dynamics and one case study at a boreal forest site. Boreal Environ. Res., 19, 237256.

    • Search Google Scholar
    • Export Citation
  • Zieger, P., and et al. , 2015: Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study. Atmos. Chem. Phys., 15, 72477267, doi:10.5194/acp-15-7247-2015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 28
PDF Downloads 112 112 11

BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate

View More View Less
  • 1 Department of Physics, University of Helsinki, Helsinki, Finland
  • | 2 Finnish Meteorological Institute, Helsinki, Finland, and Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 3 Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Colorado State University, Fort Collins, Colorado
  • | 4 Department of Physics, University of Helsinki, Helsinki, Finland
  • | 5 Finnish Meteorological Institute, Helsinki, Finland
  • | 6 University of Washington, Seattle, Washington
  • | 7 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 8 Wallops Flight Facility, National Aeronautics and Space Administration Goddard Space Flight Center, Wallops Island
  • | 9 Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Colorado State University, Fort Collins, Colorado
  • | 10 National Center for Atmospheric Research, Boulder, Colorado, and Department of Applied Physics, University of Eastern Finland, Finland, and University of California, Irvine, Irvine, California
  • | 11 Faculty of Physics, University of Vienna, Vienna, Austria
  • | 12 Department of Physics, University of Helsinki, Helsinki, Finland
  • | 13 Finnish Meteorological Institute, Helsinki, Finland
  • | 14 Department of Analytical Chemistry, University of Helsinki, Helsinki, Finland
  • | 15 Istituto di Metodologie per l’Analisi Ambientale, Consiglio Nazionale delle Ricerche Tito Scalo, Potenza, Italy
  • | 16 Institute of Atmospheric Sciences and Climate (ISAC), Bologna, Italy, and Aerodyne Research Inc., Billerica, Massachusetts
  • | 17 Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • | 18 Finnish Meteorological Institute, Kuopio, Finland
  • | 19 Brookhaven National Laboratory, Upton, New York
  • | 20 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
  • | 21 Department of Applied Physics, University of Eastern Finland, Finland
  • | 22 Department of Physics, University of Helsinki, Helsinki, Finland, and Station for Measuring Ecosystem–Atmosphere Relations II, Hyytiälä, Finland
  • | 23 Argonne National Laboratory, Lemont, Illinois
© Get Permissions
Restricted access

Abstract

During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.

CORRESPONDING AUTHOR: Tuukka Petäjä, Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland, E-mail: tuukka.petaja@helsinki.fi

Abstract

During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.

CORRESPONDING AUTHOR: Tuukka Petäjä, Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland, E-mail: tuukka.petaja@helsinki.fi
Save