• Albrecht, R. I., , C. A. Morales, , and M. A. F. Silva Dias, 2011: Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res., 116, D08209, doi:10.1029/2010JD014756.

    • Search Google Scholar
    • Export Citation
  • Anderson, N., , C. Grainger, , and J. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738, doi:10.1175/JAM2231.1.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. A. Costa, , G. P. Frank, , K. M. Longo, , and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and et al. , 2015: The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys., 15, 10 72310 776, doi:10.5194/acp-15-10723-2015.

    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and et al. , 2002: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res., 107, 8081, doi:10.1029/2001JD000666.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., 2009: Mesoscale vegetation-atmosphere feedbacks in Amazonia. J. Geophys. Res., 114, D20111, doi:10.1029/2009JD012001.

  • Bierwirth, E., and et al. , 2009: Spectral surface albedo over Morocco and its impact on the radiative forcing of Saharan dust. Tellus, 61B, 252269, doi:10.1111/j.1600-0889.2008.00395.x.

    • Search Google Scholar
    • Export Citation
  • Buchholz, B., , A. Afchine, , and V. Ebert, 2014a: Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS. Atmos. Meas. Technol., 7, 36533666, doi:10.5194/amt-7-3653-2014.

    • Search Google Scholar
    • Export Citation
  • Buchholz, B., , N. Böse, , and V. Ebert, 2014b: Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl. Phys., 116B, 883899, doi:10.1007/s00340-014-5775-4.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., , and R. L. Bras, 2005: Contemporary climate change in the Amazon. Geophys. Res. Lett., 32, L13703, doi:10.1029/2005GL022722.

    • Search Google Scholar
    • Export Citation
  • Chang, D., and et al. , 2015: Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds. Atmos. Chem. Phys., 15, 10 32510 348, doi:10.5194/acp-15-10325-2015.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., , and M. O. Andreae, 1990: Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 16691678, doi:10.1126/science.250.4988.1669.

    • Search Google Scholar
    • Export Citation
  • Cutrim, E., , D. W. Martin, , and R. Rabin, 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc., 76, 18011805, doi:10.1175/1520-0477(1995)076<1801:EOCCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dahlkötter, F., and et al. , 2014: The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe—Aerosol properties and black carbon mixing state. Atmos. Chem. Phys., 14, 61116137, doi:10.5194/acp-14-6111-2014.

    • Search Google Scholar
    • Export Citation
  • DeMott, P., and et al. , 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Després, V. R., and et al. , 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Drewnick, F., and et al. , 2005: A new time-of-flight aerosol mass spectrometer (ToF-AMS)—Instrument description and first field deployment. Aerosol Sci. Technol., 39, 637658, doi:10.1080/02786820500182040.

    • Search Google Scholar
    • Export Citation
  • Durieux, L., , L. Machado, , and H. Laurent, 2003: The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens. Environ., 86, 132140, doi:10.1016/S0034-4257(03)00095-6.

    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., , E. Bierwirth, , M. Wendisch, , J.-F. Gayet, , G. Mioche, , A. Lampert, , and J. Heintzenberg, 2008: Cloud phase identification of arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches. Atmos. Chem. Phys., 8, 74937505, doi:10.5194/acp-8-7493-2008.

    • Search Google Scholar
    • Export Citation
  • Ewald, F., , T. Kölling, , A. Baumgartner, , T. Zinner, , and B. Mayer, 2015: Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager. Atmos. Meas. Technol. Discuss., 8, 98539925, doi:10.5194/amtd-8-9853-2015.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , D. Rosenfeld, , Y. Ding, , L. R. Leung, , and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , L. R. Leung, , D. Rosenfeld, , Q. Chen, , Z. Li, , J. Zhang, , and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, doi:10.1073/pnas.1316830110.

    • Search Google Scholar
    • Export Citation
  • Fisch, G., , J. Tota, , L. A. T. Machado, , M. A. F. Dias, , L. F. Silva, , and C. Nobre, 2004: The convective boundary layer over pasture and forest in Amazonia. Theor. Appl. Climatol., 78, 4760, doi:10.1007/s00704-004-0043-x.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, W. A., , L. A. T. Machado, , and P.-E. Kirstetter, 2015: The biomass burning aerosol influence on precipitation over the Central Amazon: An observational study. Atmos. Chem. Phys., 15, 67896789, doi:10.5194/acp-15-6789-2015.

    • Search Google Scholar
    • Export Citation
  • Gunthe, S. S., and et al. , 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 75517575, doi:10.5194/acp-9-7551-2009.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and S. C. Mossop, 1974: Production of secondary ice particles during riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , A. Bansemer, , P. Field, , S. Durden, , J. Stith, , J. Dye, , W. Hall, , and C. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , A. N. Hahmann, , and J. E. Geisler, 1989: An investigation of the annual cycle of the convective activity over the tropical Americas. J. Climate, 2, 13881403, doi:10.1175/1520-0442(1989)002<1388:AIOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jäkel, E., , J. Walther, , and M. Wendisch, 2013: Thermodynamic phase retrieval of convective clouds: impact of sensor viewing geometry and vertical distribution of cloud properties. Atmos. Meas. Tech., 6, 539547, doi:10.5194/amt-6-539-2013.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , N. Benmoshe, , and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , L. R. Leung, , B. Lynn, , and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114, D22203, doi:10.1029/2009JD011902.

    • Search Google Scholar
    • Export Citation
  • Kolb, C. E., and et al. , 2010: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys., 10, 10 56110 605, doi:10.5194/acp-10-10561-2010.

    • Search Google Scholar
    • Export Citation
  • Krüger, M. L., and et al. , 2014: Assessment of cloud supersaturation by size–resolved aerosol particle and cloud condensation nuclei (CCN) measurements. Atmos. Meas. Tech., 7, 26152629, doi:10.5194/amt-7-2615-2014.

    • Search Google Scholar
    • Export Citation
  • Laursen, K. K., , D. P. Jorgensen, , G. P. Brasseur, , S. L. Ustin, , and J. R. Huning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bull. Amer. Meteor. Soc., 87, 896909, doi:10.1175/BAMS-87-7-896.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., , and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 9911009, doi:10.1175/MWR-D-13-00156.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z. Q., , F. Niu, , J. W. Fan, , Y. G. Liu, , D. Rosenfeld, , and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi:10.1038/ngeo1313.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and et al. , 2014: The CHUVA project: How does convection vary across Brazil. Bull. Amer. Meteor. Soc., 95, 13651380, doi:10.1175/BAMS-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and et al. , 2010: Sources and properties of Amazonian aerosol particles. Rev. Geophys., 48, RG2002, doi:10.1029/2008RG000280.

    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and et al. , 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, doi:10.5194/acp-16-4785-2016.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2013: Response of tropical deep convection to localized heating perturbations: Implications for aerosol-induced convective invigoration. J. Atmos. Sci., 70, 35333555, doi:10.1175/JAS-D-13-027.1.

    • Search Google Scholar
    • Export Citation
  • Negri, A., , R. Adler, , L. Xu, , and J. Surrat, 2004: The impact of Amazonian deforestation on dry season rainfall. J. Climate, 17, 13061319, doi:10.1175/1520-0442(2004)017<1306:TIOADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neves, A. T., , and G. Fisch, 2015: The daily cycle of the atmospheric boundary layer heights over pasture site in Amazonia. Amer. J. Environ. Eng., 5, 3944, doi:10.5923/s.ajee.201501.06.

    • Search Google Scholar
    • Export Citation
  • Paramonov, M., and et al. , 2015: A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos. Chem. Phys., 15, 12 21112 229, doi:10.5194/acp-15-12211-2015.

    • Search Google Scholar
    • Export Citation
  • Platt, U., , and J. Stutz, 2008: Differential Optical Absorption Spectroscopy: Principles and Applications. Physics of Earth and Space Environments, Springer Verlag, 598 pp., doi:10.1007/978-3-540-75776-4.

  • Pöschl, U., , D. Rose, , and M. O. Andreae, 2009: Climatologies of cloud-related aerosols: Part 2: Particle hygroscopicity and cloud condensation nucleus activity. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 58–72.

  • Pöschl, U., and et al. , 2010: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 429, 15131516, doi:10.1126/science.1191056.

    • Search Google Scholar
    • Export Citation
  • Reutter, P., and et al. , 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080, doi:10.5194/acp-9-7067-2009.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., , A. Nenes, , J. H. Seinfeld, , and M. O. Andreae, 2003: Impact of biomass burning on cloud properties in the Amazon Basin. J. Geophys. Res., 108, 4062, doi:10.1029/2001JD000985.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, doi:10.1029/1999GL006066.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , U. Lohmann, , G. B. Raga, , C. D. O’Dowd, , M. Kulmala, , S. Fuzzi, , A. Reissell, , and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and et al. , 2014: Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys., 52, 750808, doi:10.1002/2013RG000441.

    • Search Google Scholar
    • Export Citation
  • Schmale, J., and et al. , 2010: Aerosol layers from the 2008 eruptions of Mt. Okmok and Mt. Kasatochi: In situ UT/LS measurements of sulfate and organics over Europe. J. Geophys. Res., 115, D00L07, doi:10.1029/2009JD013628.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , C. Nobre, , and P. Sellers, 1990: Amazon deforestation and climate change. Science, 247, 13221325, doi:10.1126/science.247.4948.1322.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and et al. , 2002: Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. J. Geophys. Res., 107, 8072, doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Stith, J., , J. Fye, , A. Bansemer, , A. Heymsfield, , C. Grainger, , W. Petersen, , and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , J.-P. Chen, , Z. Li, , C. Wang, , and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , and R. G. Prinn, 2000: On the roles of deep convective clouds in tropospheric chemistry. J. Geophys. Res., 105, 22 26922 297, doi:10.1029/2000JD900263.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and et al. , 2010: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 36703674, doi:10.1073/pnas.0810156106.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., , and J.-L. Brenguier, Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley, 641 pp.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., , D. Müller, , D. Schell, , and J. Heintzenberg, 2001: An airborne spectral albedometer with active horizontal stabilization. J. Atmos. Oceanic Technol., 18, 18561866, doi:10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and et al. , 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , and D. Rosenfeld, 2015: Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophys. Res. Lett., 42, 64856491, doi:10.1002/2015GL064809.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 296 296 66
PDF Downloads 201 201 53

ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO

View More View Less
  • 1 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 2 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 3 Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 4 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil
  • | 5 Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
  • | 6 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 7 Program of Atmospheric Sciences, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
  • | 8 School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
  • | 9 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 10 Forschungszentrum Jülich (FZJ), Jülich, Germany
  • | 11 Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Belém, Brazil
  • | 12 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
  • | 13 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 14 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
  • | 15 Particle Chemistry Department, Max Planck Institute for Chemistry, and Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • | 16 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil
  • | 17 Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
  • | 18 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil
  • | 19 Forschungszentrum Jülich (FZJ), Jülich, Germany
  • | 20 Institut für Atmosphäre und Umwelt, Universität Frankfurt, Frankfurt, Germany
  • | 21 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 22 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 23 Flugexperimente, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 24 Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
  • | 25 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 26 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
  • | 27 Departamento de Ciência e Tecnologia Aeroespacial, Instituto de Aeronaútica e Espaço, São José dos Campos, Brazil
  • | 28 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 29 Institut für Atmosphäre und Umwelt, Universität Frankfurt, Frankfurt, Germany
  • | 30 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 31 Institut für Umweltphysik (IUP), Universität Heidelberg, Heidelberg, Germany
  • | 32 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 33 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 34 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 35 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 36 Leibniz-Institut für Troposphärenforschung (TROPOS), Leipzig, Germany
  • | 37 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 38 Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 39 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 40 Institut für Umweltphysik (IUP), Universität Heidelberg, Heidelberg, Germany
  • | 41 Institut für Atmosphäre und Umwelt, Universität Frankfurt, Frankfurt, Germany
  • | 42 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
  • | 43 Forschungszentrum Jülich (FZJ), Jülich, Germany
  • | 44 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 45 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 46 Max Planck Institute for Biogeochemistry, Jena, Germany
  • | 47 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil
  • | 48 Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • | 49 Instituto Nacional de Pesquisas Espaciais da Amazônia (INPA), Clima e Ambiente (CLIAMB), Manaus, Brazil
  • | 50 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
  • | 51 Leibniz-Institut für Troposphärenforschung (TROPOS), Leipzig, Germany
  • | 52 Flugexperimente, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 53 Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • | 54 Institut für Atmosphäre und Umwelt, Universität Frankfurt, Frankfurt, Germany
  • | 55 Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 56 Institut für Umweltphysik (IUP), Universität Heidelberg, Heidelberg, Germany
  • | 57 Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 58 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 59 Institut für Atmosphäre und Umwelt, Universität Frankfurt, Frankfurt, Germany
  • | 60 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 61 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 62 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 63 Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 64 Departamento de Meteorologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
  • | 65 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 66 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil
  • | 67 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, and Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • | 68 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 69 Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 70 Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany
  • | 71 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, and Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 72 Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany
  • | 73 Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
  • | 74 Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • | 75 Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
  • | 76 Flugexperimente, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
© Get Permissions
Restricted access

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

CURRENT AFFILIATION: Joint Center for Earth Systems Technology, Baltimore, Maryland

CURRENT AFFILIATION: Aerosol Physics and Environmental Physics, University of Vienna, Vienna, Austria

CORRESPONDING AUTHOR: Manfred Wendisch, Leipziger Institut für Meteorologie, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany, E-mail: m.wendisch@uni-leipzig.de

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

CURRENT AFFILIATION: Joint Center for Earth Systems Technology, Baltimore, Maryland

CURRENT AFFILIATION: Aerosol Physics and Environmental Physics, University of Vienna, Vienna, Austria

CORRESPONDING AUTHOR: Manfred Wendisch, Leipziger Institut für Meteorologie, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany, E-mail: m.wendisch@uni-leipzig.de
Save