• Argyris, D., , A. Phan, , A. Striolo, , and P. D. Ashby, 2013: Hydration structure at the α-Al2O3 (0001) surface: Insights from experimental atomic force spectroscopic data and atomistic molecular dynamics simulations. J. Phys. Chem., 117C, 10 43310 444, doi:10.1021/jp400370g.

    • Search Google Scholar
    • Export Citation
  • Atkinson, J. D., and et al. , 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosol. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Burkhardt, U., , and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 5458, doi:10.1038/nclimate1068.

    • Search Google Scholar
    • Export Citation
  • Carr, T. H. G., , J. J. Shephard, , and C. G. Salzmann, 2014: Spectroscopic signature of stacking disorder in ice I. J. Phys. Chem. Lett., 5, 24692473, doi:10.1021/jz500996p.

    • Search Google Scholar
    • Export Citation
  • Catalano, G., 2011: Weak interfacial water ordering on isostructural hematite and corundum (0 0 1) surfaces. Geochim. Cosmochim. Acta, 75, 20622071, doi:10.1016/j.gca.2011.01.025.

    • Search Google Scholar
    • Export Citation
  • Cox, S. J., , Z. Raza, , S. M. Kathmann, , B. Slater, , and A. Michaelides, 2013: The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss., 167, 389403, doi:10.1039/c3fd00059a.

    • Search Google Scholar
    • Export Citation
  • Cox, S. J., , S. M. Kathmann, , B. Slater, , and A. Michaelides, 2015a: Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys., 142, 184704, doi:10.1063/1.4919714.

    • Search Google Scholar
    • Export Citation
  • Cox, S. J., , S. M. Kathmann, , B. Slater, , and A. Michaelides, 2015b: Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers. J. Chem. Phys., 142, 184705, doi:10.1063/1.4919715.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and et al. , 2009: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333336, doi:10.1038/ngeo499.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and et al. , 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

  • Ehre, D., , E. Lavert, , M. Lahav, , and I. Lubomirsky, 2010: Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science, 327, 672675, doi:10.1126/science.1178085.

    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., , N. Hoffmann, , A. Kiselev, , A. Dreyer, , K. Zhang, , G. Kulkarni, , T. Koop, , and O. Möhler, 2014: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmos. Chem. Phys., 14, 23152324, doi:10.5194/acp-14-2315-2014.

    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and et al. , 2015: Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci., 8, 273277, doi:10.1038/ngeo2374.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., , and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , A. Dörnbrack, , and I. Sölch, 2014: Supersaturation variability and cirrus ice crystal size distributions. J. Atmos. Sci., 71, 29052926, doi:10.1175/JAS-D-13-0404.1.

    • Search Google Scholar
    • Export Citation
  • Kuhs, W. F., , C. Sippel, , A. Falenty, , and T. C. Hansen, 2012: Extent and relevance of stacking disorder in “ice Ic.” Proc. Natl. Acad. Sci. USA, 109, 21 25921 264, doi:10.1073/pnas.1210331110.

    • Search Google Scholar
    • Export Citation
  • Li, T., , D. Donadio, , G. Russo, , and G. Galli, 2011: Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys., 13, 19 80719 813, doi:10.1039/c1cp22167a.

    • Search Google Scholar
    • Export Citation
  • Lis, D., , E. H. G. Backus, , J. Hunger, , S. H. Parekh, , and M. Bonn, 2014: Liquid flow along a solid surface reversibly alters interfacial chemistry. Science, 344, 11381142, doi:10.1126/science.1253793.

    • Search Google Scholar
    • Export Citation
  • Lupi, L., , A. Hudait, , and V. Molinero, 2014: Heterogeneous nucleation of ice on carbon surfaces. J. Amer. Chem. Soc., 136, 31563164, doi:10.1021/ja411507a.

    • Search Google Scholar
    • Export Citation
  • Malkin, T. L., , B. J. Murray, , V. Andrey, , J. Anwar, , C. G. Salzmann, , and A. V. Brukhno, 2012: Structure of ice crystallized from supercooled water. Proc. Natl. Acad. Sci. USA, 109, 10411045, doi:10.1073/pnas.1113059109.

    • Search Google Scholar
    • Export Citation
  • Moore, E. B., , and V. Molinero, 2011a: Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys., 13, 20 00820 016, doi:10.1039/c1cp22022e.

    • Search Google Scholar
    • Export Citation
  • Moore, E. B., , and V. Molinero, 2011b: Structural transformation in supercooled water controls the crystallization rate of ice. Nature, 479, 506508, doi:10.1038/nature10586.

    • Search Google Scholar
    • Export Citation
  • Neely, R. R., , and J. P. Thayer, 2011: Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland. J. Atmos. Oceanic Technol., 28, 11411148, doi:10.1175/JTECH-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and et al. , 2015: The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep., 5, 8082, doi:10.1038/srep08082.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and et al. , 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401, doi:10.1038/ngeo521.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., , and J. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer, 954 pp.

  • Sanz, E., , C. Vega, , J. R. Espinosa, , R. Caballero-Bernal, , J. L. F. Abascal, , and C. Valeriani, 2013: Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Amer. Chem. Soc., 135, 15 00815 017, doi:10.1021/ja4028814.

    • Search Google Scholar
    • Export Citation
  • Sazaki, G., , S. Zepeda, , S. Nakatsubo, , E. Yokoyama, , and Y. Furukawa, 2010: Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl. Acad. Sci. USA, 107, 19 70219 707, doi:10.1073/pnas.1008866107.

    • Search Google Scholar
    • Export Citation
  • Sellberg, J. A., and et al. , 2014: Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 510, 381384, doi:10.1038/nature13266.

    • Search Google Scholar
    • Export Citation
  • Thürmer, K., , and S. Nie, 2013: Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl. Acad. Sci. USA, 110, 11 75711 762, doi:10.1073/pnas.1303001110.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , and M. R. Poellot, 2005: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5, 22892297, doi:10.5194/acpd-5-3723-2005.

    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and et al. , 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 8
PDF Downloads 39 39 7

A Blue-Sky Approach to Understanding Cloud Formation

View More View Less
  • 1 Department of Chemistry, and Thomas Young Centre, University College London, London, United Kingdom
  • | 2 Department of Physics and Astronomy, and Thomas Young Centre, and London Centre for Nanotechnology, University College London, London, United Kingdom
  • | 3 Department of Chemistry, University College London, London, United Kingdom
  • | 4 Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
© Get Permissions
Restricted access

CORRESPONDING AUTHOR: Ben Slater, Dept. of Chemistry, University College London, Christopher Ingold Building, 20 Gordon St., London WC1H 0AJ, United Kingdom, E-mail: b.slater@ucl.ac.uk

CORRESPONDING AUTHOR: Ben Slater, Dept. of Chemistry, University College London, Christopher Ingold Building, 20 Gordon St., London WC1H 0AJ, United Kingdom, E-mail: b.slater@ucl.ac.uk
Save