• Baldridge, A. M., , S. J. Hook, , C. I. Grove, , and G. Rivera, 2009: The ASTER Spectral Library Version 2.0. Remote Sens. Environ., 113, 711715, doi:10.1016/j.rse.2008.11.007.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., , C. Wang, , R. Rogers, , L. D. Carey, , W. Feltz, , and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Bessho, K., and et al. , 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, doi:10.2151/jmsj.2016-009.

    • Search Google Scholar
    • Export Citation
  • Chapanis, A., 1954: Color names for color space. Amer. Sci., 53, 327346.

  • d’Entremont, R. P., , and L. W. Thomason, 1987: Interpreting meteorological satellite images using a color composite technique. Bull. Amer. Meteor. Soc., 68, 762768, doi:10.1175/1520-0477(1987)068<0762:IMSIUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Early, E. A., , B. C. Bush, , S. W. Brown, , D. W. Allen, , and B. C. Johnson, 2002: Radiometric calibration of the Scripps Earth Polychromatic Imaging Camera. Earth Observing Systems VI, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4483), doi:10.1117/12.453474.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., , P. Yang, , W. Han, , R.-R. Li, , and W. J. Wiscombe, 2002: An algorithm using visible and 1.38-mm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40, 16591668, doi:10.1109/TGRS.2002.802454.

    • Search Google Scholar
    • Export Citation
  • Gladkova, I., , F. Shahriar, , M. Grossberg, , G. Bonev, , D. Hillger, , and S. Miller, 2011: Virtual green band for GOES-R. Earth Observing Systems XVI, J. J. Butler, , X. Xiong, , and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), doi:10.1117/12.893660.

    • Search Google Scholar
    • Export Citation
  • Hillger, D., , L. Grasso, , S. D. Miller, , R. Brummer, , and R. DeMaria, 2011: Synthetic GOES-R Advanced Baseline Imager true color imagery. J. Appl. Remote Sens., 5, 053520, doi:10.1117/1.3576112.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and et al. , 2006a: MODIS provides a satellite focus on Operation Iraqi Freedom. Int. J. Remote Sens., 27, 12851296, doi:10.1080/01431160500383772.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and et al. , 2006b: NexSat: Previewing NPOESS/VIIRS imagery capabilities. Bull. Amer. Meteor. Soc., 87, 433446, doi:10.1175/BAMS-87-4-433.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., , C. Schmidt, , T. Schmit, , and D. Hillger, 2012: A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens., 33, 39994028, doi:10.1080/01431161.2011.637529.

    • Search Google Scholar
    • Export Citation
  • Patterson, E. M., , D. A. Gillette, , and B. H. Stockton, 1977: Complex index of refraction between 300 and 700 nm for Saharan aerosols. J. Geophys. Res., 82, 31533160, doi:10.1029/JC082i021p03153.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, doi:10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , W. P. Menzel, , J. Sieglaff, , J. P. Nelson III, , M. K. Griffin, , and J. J. Gurka, 2003: Channel selection for the next generation geostationary Advanced Baseline Imagers. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P5.3. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_54285.htm.]

  • Schmit, T. J., , M. M. Gunshor, , W. P. Menzel, , J. Li, , S. Bachmeier, , and J. J. Gurka, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, doi:10.1117/1.JRS.7.073462.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and et al. , 2015: Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, doi:10.1175/BAMS-D-13-00210.1.

    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., , and R. Parent, 1968: A color view of Planet Earth. Bull. Amer. Meteor. Soc., 49, 7475.

  • Warnecke, G., , and W. Sunderlin, 1968: The first color picture of the earth taken from the ATS3 satellite. Bull. Amer. Meteor. Soc., 49, 7583.

    • Search Google Scholar
    • Export Citation
  • Yamanoi, Y., , S. Takeuchi, , S. Okumur, , S. Nakashima, , and T. Yokoyama, 2008: Color measurements of volcanic ash deposits from three different styles of summit activity at Sakurajima volcano, Japan: Conduit processes recorded in color of volcanic ash. J. Volcanol. Geotherm. Res., 178, 8193, doi:10.1016/j.jvolgeores.2007.11.013.

    • Search Google Scholar
    • Export Citation
  • Young, A. T., 1981: Rayleigh scattering. Appl. Opt., 20, 533535, doi:10.1364/AO.20.000533.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 212 39
PDF Downloads 165 165 44

A Sight for Sore Eyes: The Return of True Color to Geostationary Satellites

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, Colorado
  • | 2 NOAA/Center for Satellite Applications and Research, Advanced Satellite Products Branch, Madison, Wisconsin
  • | 3 Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, Colorado
  • | 4 NOAA/Center for Satellite Applications and Research, Regional and Mesoscale Meteorology Branch, Ft. Collins, Colorado
  • | 5 Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 6 Meteorological Satellite Center, Japan Meteorological Agency, Tokyo, Japan
  • | 7 NOAA/Center for Satellite Applications and Research, Regional and Mesoscale Meteorology Branch, Ft. Collins, Colorado
© Get Permissions
Restricted access

Abstract

In 1967, at the dawn of the satellite era, the Applications Technology Satellite 3 (ATS-3) provided the first full-disk “true color” images of Earth. With its depiction of blue oceans, golden deserts, and green forestlands beneath white clouds, the imagery captured the iconic Blue Marble in a way that resonates strongly with human perception. After ATS-3, the standard fare of geostationary satellites entailed a single visible band with additional infrared spectral channels. While single-band visible satisfied the basic user requirements of daytime imagery, the loss of true-color capability and its inherent capability to distinguish myriad atmospheric and surface features via coloration left a notable void. Nearly half a century later, with the launch of Japan’s Himawari-8 in October 2014, there is once again a geostationary sensor—the Advanced Himawari Imager (AHI)—containing the multispectral visible bands required notionally for true color. However, it soon became apparent that AHI’s “green” band, centered at 0.51 μm, was not aligned with the chlorophyll reflectance signature near 0.55 μm. As a result, vegetation appears browner and deserts appear redder than legacy true-color imagery. Here, we describe a technique that attempts to mitigate these issues by blending information from a ref lective-infrared band at 0.86 μm to form a “hybrid” green band. When combining this method with Rayleigh corrections, AHI’s true-color performance is found to be consistent with that of the optimal 0.55-μm band, offering a stopgap solution adaptable to future satellites of similar design.

CORRESPONDING AUTHOR: Steven D. Miller, Ph.D., Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, 1375 Campus Delivery, Ft. Collins, CO 80523, E-mail: steven.miller@colostate.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00154.2)

Abstract

In 1967, at the dawn of the satellite era, the Applications Technology Satellite 3 (ATS-3) provided the first full-disk “true color” images of Earth. With its depiction of blue oceans, golden deserts, and green forestlands beneath white clouds, the imagery captured the iconic Blue Marble in a way that resonates strongly with human perception. After ATS-3, the standard fare of geostationary satellites entailed a single visible band with additional infrared spectral channels. While single-band visible satisfied the basic user requirements of daytime imagery, the loss of true-color capability and its inherent capability to distinguish myriad atmospheric and surface features via coloration left a notable void. Nearly half a century later, with the launch of Japan’s Himawari-8 in October 2014, there is once again a geostationary sensor—the Advanced Himawari Imager (AHI)—containing the multispectral visible bands required notionally for true color. However, it soon became apparent that AHI’s “green” band, centered at 0.51 μm, was not aligned with the chlorophyll reflectance signature near 0.55 μm. As a result, vegetation appears browner and deserts appear redder than legacy true-color imagery. Here, we describe a technique that attempts to mitigate these issues by blending information from a ref lective-infrared band at 0.86 μm to form a “hybrid” green band. When combining this method with Rayleigh corrections, AHI’s true-color performance is found to be consistent with that of the optimal 0.55-μm band, offering a stopgap solution adaptable to future satellites of similar design.

CORRESPONDING AUTHOR: Steven D. Miller, Ph.D., Cooperative Institute for Research in the Atmosphere, Colorado State University, Foothills Campus, 1375 Campus Delivery, Ft. Collins, CO 80523, E-mail: steven.miller@colostate.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00154.2)

Supplementary Materials

    • Supplemental Materials (ZIP 107.81 MB)
Save