• Brown, B. R., , and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, doi:10.1175/JAS-D-12-0112.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and W. H. Schubert, 1985: Axisymmetric, primitive equation, spectral tropical cyclone model. Part II: Normal mode initialization. J. Atmos. Sci., 42, 12251236, doi:10.1175/1520-0469(1985)042<1225:APESTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., , and M. A. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, doi:10.1175/JAS-D-14-0007.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, doi:10.1146/annurev.earth.31.100901.141259.

  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376, doi:10.1175/2010JAS3644.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2013: The variability and predictability of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 70, 9931005, doi:10.1175/JAS-D-12-0188.1.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and et al. , 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 1938, doi:10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Judt, F., , S. S. Chen, , and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 4357, doi:10.1002/qj.2626.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., 2015: Hurricane maximum potential intensity equilibrium. Quart. J. Roy. Meteor. Soc., 141, 24712480, doi:10.1002/qj.2556.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Ott, E., 2002: Chaos in Dynamical Systems. 2nd ed. Cambridge University Press, 492 pp.

  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, doi:10.1175/2007JAS2449.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., , C. Q. Kieu, , Y. Kwon, , S. Trahan, , Q. Liu, , Z. Zhang, , and I.-H. Kwon, 2014a: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and et al. , 2014b: Hurricane Weather Research and Forecasting (HWRF) model: 2014 scientific documentation. NCAR Development Testbed Center Rep., 105 pp. [Available online at www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.6a_ScientificDoc.pdf.]

  • Walsh, K., and et al. , 2015: Hurricanes and climate: The U.S. CLIVAR Working Group on Hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, doi:10.1175/BAMS-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, doi:10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, doi:10.1029/JC084iC06p03173.

  • Yang, B., , Y. Wang, , and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 9
PDF Downloads 73 73 7

Hurricane Intensity Predictability

View More View Less
  • 1 Atmospheric Science Program, Department of Geological Sciences, Indiana University, Bloomington, Indiana
© Get Permissions
Restricted access

Abstract

Weather has long been projected to possess limited predictability due to the inherent chaotic nature of the atmosphere; small changes in initial conditions could lead to an entirely different state of the atmosphere after some period of time. Given such a limited range of predictability of atmospheric flows, a natural question is, how far in advance can we predict a hurricane’s intensity? In this study, it is shown first that the predictability of a hurricane’s intensity at the 4–5-day lead times is generally determined more by the large-scale environment than by a hurricane’s initial conditions. This result suggests that future improvement in hurricane longer-range intensity forecasts by numerical models will be most realized as a result of improvement in the large-scale environment rather than in the storm’s initial state. At the mature stage of a hurricane, direct estimation of the leading Lyapunov exponent using an axisymmetric model reveals, nevertheless, the existence of a chaotic attractor in the phase space of the hurricane scales. This finding of a chaotic maximum potential intensity (MPI) attractor provides direct information about the saturation of a hurricane’s intensity errors around 8 m s−1, which prevents the absolute intensity errors at the mature stage from being reduced below this threshold. The implication of such intensity error saturation to the limited range of hurricane intensity forecasts will be also discussed.

CORRESPONDING AUTHOR: Chanh Kieu, Department of Geological Sciences, Indiana University, 1001 East 10th Street, GY428A Geological Building, Bloomington, IN 47405-1405, E-mail: ckieu@indiana.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00168.2)

Abstract

Weather has long been projected to possess limited predictability due to the inherent chaotic nature of the atmosphere; small changes in initial conditions could lead to an entirely different state of the atmosphere after some period of time. Given such a limited range of predictability of atmospheric flows, a natural question is, how far in advance can we predict a hurricane’s intensity? In this study, it is shown first that the predictability of a hurricane’s intensity at the 4–5-day lead times is generally determined more by the large-scale environment than by a hurricane’s initial conditions. This result suggests that future improvement in hurricane longer-range intensity forecasts by numerical models will be most realized as a result of improvement in the large-scale environment rather than in the storm’s initial state. At the mature stage of a hurricane, direct estimation of the leading Lyapunov exponent using an axisymmetric model reveals, nevertheless, the existence of a chaotic attractor in the phase space of the hurricane scales. This finding of a chaotic maximum potential intensity (MPI) attractor provides direct information about the saturation of a hurricane’s intensity errors around 8 m s−1, which prevents the absolute intensity errors at the mature stage from being reduced below this threshold. The implication of such intensity error saturation to the limited range of hurricane intensity forecasts will be also discussed.

CORRESPONDING AUTHOR: Chanh Kieu, Department of Geological Sciences, Indiana University, 1001 East 10th Street, GY428A Geological Building, Bloomington, IN 47405-1405, E-mail: ckieu@indiana.edu

A supplement to this article is available online (10.1175/BAMS-D-15-00168.2)

Supplementary Materials

    • Supplemental Materials (ZIP 377.32 KB)
Save