• Anderson, B. G., , and M. L. Bell, 2009: Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20, 205213, doi:10.1097/EDE.0b013e318190ee08.

    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., , and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, doi:10.1289/ehp.1002313.

    • Search Google Scholar
    • Export Citation
  • Arguez, A., , I. Durre, , S. Applequist, , R. S. Vose, , M. F. Squires, , X. Yin, , R. R. Heim Jr., , and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, doi:10.1175/BAMS-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, A. G., , S. Tong, , and A. C. A. Clements, 2010: What measure of temperature is the best predictor of mortality? Environ. Res., 110, 604611, doi:10.1016/j.envres.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • Barnett, A. G., , S. Hajat, , A. Gasparrini, , and J. Rocklöv, 2012: Cold and heat waves in the United States. Environ. Res., 112, 218224, doi:10.1016/j.envres.2011.12.010.

    • Search Google Scholar
    • Export Citation
  • Basagaña, X., , J. P. Escalera-Antezana, , P. Dadvand, , Ò. Llatje, , J. Barrera-Gómez, , J. Cunillera, , and M. Medina-Ramon, , and K. Pérez, 2015: High ambient temperatures and risk of motor vehicle crashes in Catalonia, Spain (2000–2011): A time-series analysis. Environ. Health Perspect., 123, 13091316, doi:10.1289/ehp.1409223.

    • Search Google Scholar
    • Export Citation
  • Berko, J., , D. D. Ingram, , S. Saha, , and J. D. Parker, 2014: Deaths attributed to heat, cold, and other weather events in the United States, 2006–2010. National Health Statistics Rep. 76, 16 pp. [Available online at www.cdc.gov/nchs/data/nhsr/nhsr076.pdf.]

  • Budd, G. M., 2008: Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport, 11, 2032, doi:10.1016/j.jsams.2007.07.003.

    • Search Google Scholar
    • Export Citation
  • CDC, 2013: Heat illness and deaths–New York City, 2000-2011. Morbidity, Mortal. Wkly. Rep., 62, 617621.

  • Cheng, Y., , J. Niu, , and N. Gao, 2012: Thermal comfort models: A review and numerical investigation. Build. Environ., 47, 1322, doi:10.1016/j.buildenv.2011.05.011.

    • Search Google Scholar
    • Export Citation
  • Choudhary, E., , and A. Vaidyanathan, 2014: Heat stress illness hospitalizations—Environmental public health tracking program, 20 states, 2001–2010. Morbidity, Mortal. Wkly. Rep. Surveill. Summ., 63, 110.

    • Search Google Scholar
    • Export Citation
  • Combs, D. L., , L. E. Quenemoen, , R. G. Parrish, , and J. H. Davis, 1999: Assessing disaster-attributed mortality: Development and application of a definition and classification matrix. Int. J. Epidemiol., 28, 11241129, doi:10.1093/ije/28.6.1124.

    • Search Google Scholar
    • Export Citation
  • Curriero, F. C., , K. S. Heiner, , J. M. Samet, , S. L. Zeger, , L. Strug, , and J. A. Patz, 2002: Temperature and mortality in 11 cities of the eastern United States. Amer. J. Epidemiol., 155, 8087, doi:10.1093/aje/155.1.80.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , P. C. Knappenberger, , P. J. Michaels, , and W. M. Novicoff, 2003: Changing heat-related mortality in the United States. Environ. Health Perspect., 111, 17121718, doi:10.1289/ehp.6336.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , G. A. Meehl, , C. Parmesan, , S. A. Chagnon, , T. Karl, , and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Fowler, D. R., and et al. , 2013: Heat-related deaths after an extreme heat event - Four states, 2012, and United States, 1999–2009. Morbidity, Mortal. Wkly. Rep., 62, 433436.

    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., , and B. Armstrong, 2011: The impact of heat waves on mortality. Epidemiology, 22, 6873, doi:10.1097/EDE.0b013e3181fdcd99.

    • Search Google Scholar
    • Export Citation
  • Hajat, S., , B. Armstrong, , M. Baccini, , A. Biggeri, , L. Bisanti, , A. Russo, , A. Paldy, , B. Menne, , and T. Kosatsky, 2006: Impact of high temperatures on mortality: Is there an added heat wave effect? Epidemiology, 17, 632638, doi:10.1097/01.ede.0000239688.70829.63.

    • Search Google Scholar
    • Export Citation
  • Hajat, S., and et al. , 2010: Heat-health warning systems: a comparison of the predictive capacity of different approaches to identifying dangerously hot days. Amer. J. Public Health, 100, 11371144, doi:10.2105/AJPH.2009.169748.

    • Search Google Scholar
    • Export Citation
  • Hanzlick, R., and et al. , 2006: Cause of Death and the Death Certificate: Important Information for Physicians, Coroners, Medical Examiners, and the Public. College of American Pathologists, 244 pp.

  • Hertel, S., , A. Le Tertre, , K. H. Jöckel, , and B. Hoffmann, 2009: Quantification of the heat wave effect on cause-specific mortality in Essen, Germany. Eur. J. Epidemiol., 24, 407414, doi:10.1007/s10654-009-9359-2.

    • Search Google Scholar
    • Export Citation
  • Hondula, D. M., , J. K. Vanos, , and S. N. Gosling, 2014: The SSC: A decade of climate–health research and future directions. Int. J. Biometeorol., 58, 109120, doi:10.1007/s00484-012-0619-6.

    • Search Google Scholar
    • Export Citation
  • Höppe, P., 1999: The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeor., 43, 7175, doi:10.1007/s004840050118.

    • Search Google Scholar
    • Export Citation
  • Huth, R., , J. Kyselý, , and L. Pokorná, 2000: A GCM simulation of heat waves, dry spells, and their relationships to circulation. Climatic Change, 46, 2960, doi:10.1023/A:1005633925903.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 976 pp.

  • Ishigami, A., , S. Hajat, , R. S. Kovats, , L. Bisanti, , M. Rognoni, , A. Russo, , and A. Paldy, 2008: An ecological time-series study of heat-related mortality in three European cities. Environ. Health, 7, doi:10.1186/1476-069X-7-5.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., , G. Tan, , and J. A. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717730, doi:10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kent, S. T., , L. A. McClure, , B. F. Zaitchik, , T. T. Smith, , and J. M. Gohlke, 2014: Heat waves and health outcomes in Alabama (USA): The importance of heat wave definition. Environ. Health Perspect., 122, 151158, doi:10.1289/ehp.1307262.

    • Search Google Scholar
    • Export Citation
  • Klinenberg, E., 2002: Heat Wave: A Social Autopsy of Disaster in Chicago. University of Chicago Press, 305 pp.

  • Klinenberg, E., 2003: Review of heat wave: Social autopsy of disaster in Chicago. N. Engl. J. Med., 348, 666667, doi:10.1056/NEJM200302133480721.

    • Search Google Scholar
    • Export Citation
  • Kovats, R. S., , and S. Hajat, 2008: Heat stress and public health: A critical review. Annu. Rev. Public Health, 29, 4155, doi:10.1146/annurev.publhealth.29.020907.090843.

    • Search Google Scholar
    • Export Citation
  • Matzarakis, A., , H. Mayer, , and M. G. Iziomon, 1999: Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeor., 43, 7684, doi:10.1007/s004840050119.

    • Search Google Scholar
    • Export Citation
  • Medina-Ramon, M., , and J. D. Schwartz, 2007: Temperature, temperature extremes, and mortality: A study of acclimatization and effect modification in 50 US cities. Occup. Environ. Med., 64, 827833, doi:10.1136/oem.2007.033175.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., , O. V. Wilhelmi, , G. A. Meehl, , and L. Dilling, 2011: Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Annu. Rev. Environ. Resour., 36, 125, doi:10.1146/annurev-environ-060809-100145.

    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., , and R. J. Fawcett, 2014: The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, 12, 227253, doi:10.3390/ijerph120100227.

    • Search Google Scholar
    • Export Citation
  • Nastos, P. T., , and A. Matzarakis, 2012: The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor. Appl. Climatol., 108, 591599, doi:10.1007/s00704-011-0555-0.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: Advancing the Science of Climate Change. National Academies Press, 528 pp., doi:10.17226/12782.

  • NOAA/NWS, 1999: Automated Station Observing System (ASOS). Accessed October 2015. [Available online at www.nws.noaa.gov/ost/asostech.html.]

  • Parsons, K., 2014: Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance. 3rd ed. CRC Press, 635 pp.

  • Pascal, M., and et al. , 2006: France’s heat health watch warning system. Int. J. Biometeor., 50, 144153, doi:10.1007/s00484-005-0003-x.

    • Search Google Scholar
    • Export Citation
  • Pascal, M., , V. Wagner, , A. Le Tertre, , K. Laaidi, , C. Honoré, , F. Bénichou, , and P. Beaudeau, 2013: Definition of temperature thresholds: The example of the French heat wave warning system. Int. J. Biometeor., 57, 2129, doi:10.1007/s00484-012-0530-1.

    • Search Google Scholar
    • Export Citation
  • Peng, R. D., , J. F. Bobb, , C. Tebaldi, , L. McDaniel, , M. L. Bell, , and F. Dominici, 2011: Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect., 119, 701706, doi:10.1289/ehp.1002430.

    • Search Google Scholar
    • Export Citation
  • Reid, C. E., , M. S. O’Neill, , C. J. Gronlund, , S. J. Brines, , D. G. Brown, , A. V. Diez-Roux, , and J. Schwartz, 2009: Mapping community determinants of heat vulnerability. Environ. Health Perspect., 117, 17301736, doi:10.1289/ehp.0900683.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775, doi:10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., 1990: The heat index equation (or, more than you ever wanted to know about heat index). SR 90-23, NWS/Southern Regional Headquarters, 2 pp. [Available online at www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF.]

  • Semenza, J. C., , C. H. Rubin, , K. H. Falter, , J. D. Selanikio, , W. D. Flanders, , H. L. Howe, , and J. L. Wilhelm, 1996: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med., 335, 8490, doi:10.1056/NEJM199607113350203.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., , A. J. Kalkstein, , and L. S. Kalkstein, 2009: Trends in heat-related mortality in the United States, 1975–2004. Nat. Hazards, 50, 145160, doi:10.1007/s11069-008-9327-2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. T., , B. F. Zaitchik, , and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, doi:10.1007/s10584-012-0659-2.

    • Search Google Scholar
    • Export Citation
  • Thom, E. C., 1959: The discomfort index. Weatherwise, 12(2), 5761, doi:10.1080/00431672.1959.9926960.

  • Vaneckova, P., , G. Neville, , V. Tippett, , P. Aitken, , G. FitzGerald, , and S. Tong, 2011: Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteor. Climatol., 50, 11651176, doi:10.1175/2011JAMC2632.1.

    • Search Google Scholar
    • Export Citation
  • Vanos, J. K., , J. S. Warland, , T. J. Gillespie, , G. A. Slater, , R. D. Brown, , and N. A. Kenny, 2012: Human energy budget modeling in urban parks in Toronto and applications to emergency heat stress preparedness. J. Appl. Meteor. Climatol., 51, 16391653, doi:10.1175/JAMC-D-11-0245.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., , R. B. Rood, , G. Michailidis, , E. M. Oswald, , J. D. Schwartz, , A. Zanobetti, , K. L. Ebi, , and M. S. O’Neill, 2012: Comparing exposure metrics for classifying ‘dangerous heat’in heat wave and health warning systems. Environ. Int., 46, 2329, doi:10.1016/j.envint.2012.05.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , R. Ramakrishnan, , and M. Livny, 1996: BIRCH: An efficient data clustering method for very large databases. ACM SIGMOD, 25, 103114, doi:10.1145/235968.233324.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 384 384 15
PDF Downloads 81 81 16

A Statistical Framework to Evaluate Extreme Weather Definitions from a Health Perspective: A Demonstration Based on Extreme Heat Events

View More View Less
  • 1 National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
  • | 2 National Center for Injury Prevention and Control, CDC, Atlanta, Georgia
  • | 3 National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
  • | 4 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Issuance of alerts, prior to or during extreme weather events, can be critical to preventing adverse health outcomes. In this paper, data describing episodes of extreme heat are used to demonstrate the application of a statistical framework for evaluating event definitions within the context of human health impacts. Numerous extreme heat event (EHE) definitions appear in the literature but there is a lack of scientific consensus on consistent identification of periods of extreme heat having the potential for such impacts. Ninety-two EHE definitions were operationalized for this region-specific demonstration covering the United States, using station-based meteorological data for the years 1999–2009. Hierarchical cluster analysis was used to group definitions into homogeneous sets, and a representative definition was then selected from each set. The representative definitions were combined with different exposure offsets (e.g., a 1-day lag) and evaluated against daily heat mortality data, using a negative binomial rate regression modeling approach. The EHE definition and exposure offset combinations most closely associated with heat mortality were found to vary with climate region. Those involving high but not extreme meteorological thresholds, and employing a 1-day lag or no lag, showed the strongest associations with heat mortality for all climate regions except the South and Southwest. The framework presented in this study could be applied to other geographic areas, provided the necessary meteorological and health data are available. Additionally, this framework could help regional and national weather offices, in partnership with local and state health departments, identify definitions that are well suited to issuing alerts and health advisories related to other types of severe weather.

CORRESPONDING AUTHOR: Ambarish Vaidyanathan, Centers for Disease Control and Prevention, 4770 Buford Hgwy., MS F60, Atlanta, GA 30341, E-mail: rishv@cdc.gov

A supplement to this article is available online (10.1175/BAMS-D-15-00181.2)

Abstract

Issuance of alerts, prior to or during extreme weather events, can be critical to preventing adverse health outcomes. In this paper, data describing episodes of extreme heat are used to demonstrate the application of a statistical framework for evaluating event definitions within the context of human health impacts. Numerous extreme heat event (EHE) definitions appear in the literature but there is a lack of scientific consensus on consistent identification of periods of extreme heat having the potential for such impacts. Ninety-two EHE definitions were operationalized for this region-specific demonstration covering the United States, using station-based meteorological data for the years 1999–2009. Hierarchical cluster analysis was used to group definitions into homogeneous sets, and a representative definition was then selected from each set. The representative definitions were combined with different exposure offsets (e.g., a 1-day lag) and evaluated against daily heat mortality data, using a negative binomial rate regression modeling approach. The EHE definition and exposure offset combinations most closely associated with heat mortality were found to vary with climate region. Those involving high but not extreme meteorological thresholds, and employing a 1-day lag or no lag, showed the strongest associations with heat mortality for all climate regions except the South and Southwest. The framework presented in this study could be applied to other geographic areas, provided the necessary meteorological and health data are available. Additionally, this framework could help regional and national weather offices, in partnership with local and state health departments, identify definitions that are well suited to issuing alerts and health advisories related to other types of severe weather.

CORRESPONDING AUTHOR: Ambarish Vaidyanathan, Centers for Disease Control and Prevention, 4770 Buford Hgwy., MS F60, Atlanta, GA 30341, E-mail: rishv@cdc.gov

A supplement to this article is available online (10.1175/BAMS-D-15-00181.2)

Supplementary Materials

    • Supplemental Materials (ZIP 1.23 MB)
Save