Where Are the Lightning Hotspots on Earth?

Rachel I. Albrecht Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil, and Cooperative Institute for Climate and Satellites-Maryland, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel I. Albrecht in
Current site
Google Scholar
PubMed
Close
,
Steven J. Goodman NOAA/National Environmental Satellite Data and Information Service, Greenbelt, Maryland

Search for other papers by Steven J. Goodman in
Current site
Google Scholar
PubMed
Close
,
Dennis E. Buechler University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Dennis E. Buechler in
Current site
Google Scholar
PubMed
Close
,
Richard J. Blakeslee Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama

Search for other papers by Richard J. Blakeslee in
Current site
Google Scholar
PubMed
Close
, and
Hugh J. Christian University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Hugh J. Christian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous total lightning climatology studies using Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) observations were reported at coarse resolution (0.5°) and employed significant spatial and temporal smoothing to account for sampling limitations of TRMM’s tropical to subtropical low-Earth-orbit coverage. The analysis reported here uses a 16-yr reprocessed dataset to create a very high-resolution (0.1°) climatology with no further spatial averaging. This analysis reveals that Earth’s principal lightning hotspot occurs over Lake Maracaibo in Venezuela, while the highest flash rate density hotspot previously found at the lower 0.5°-resolution sampling was found in the Congo basin in Africa. Lake Maracaibo’s pattern of convergent windflow (mountain–valley, lake, and sea breezes) occurs over the warm lake waters nearly year-round and contributes to nocturnal thunderstorm development 297 days per year on average. These thunderstorms are very localized, and their persistent development anchored in one location accounts for the high flash rate density. Several other inland lakes with similar conditions, that is, deep nocturnal convection driven by locally forced convergent flow over a warm lake surface, are also revealed.

Africa is the continent with the most lightning hotspots, followed by Asia, South America, North America, and Australia. A climatological map of the local hour of maximum flash rate density reveals that most oceanic total lightning maxima are related to nocturnal thunderstorms, while continental lightning tends to occur during the afternoon. Most of the principal continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development.

CORRESPONDING AUTHOR: Rachel Ifanger Albrecht, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo-SP, Brazil, E-mail: rachel.albrecht@iag.usp.br

A supplement to this article is available online (10.1175/BAMS-D-14-00193.2)

Abstract

Previous total lightning climatology studies using Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) observations were reported at coarse resolution (0.5°) and employed significant spatial and temporal smoothing to account for sampling limitations of TRMM’s tropical to subtropical low-Earth-orbit coverage. The analysis reported here uses a 16-yr reprocessed dataset to create a very high-resolution (0.1°) climatology with no further spatial averaging. This analysis reveals that Earth’s principal lightning hotspot occurs over Lake Maracaibo in Venezuela, while the highest flash rate density hotspot previously found at the lower 0.5°-resolution sampling was found in the Congo basin in Africa. Lake Maracaibo’s pattern of convergent windflow (mountain–valley, lake, and sea breezes) occurs over the warm lake waters nearly year-round and contributes to nocturnal thunderstorm development 297 days per year on average. These thunderstorms are very localized, and their persistent development anchored in one location accounts for the high flash rate density. Several other inland lakes with similar conditions, that is, deep nocturnal convection driven by locally forced convergent flow over a warm lake surface, are also revealed.

Africa is the continent with the most lightning hotspots, followed by Asia, South America, North America, and Australia. A climatological map of the local hour of maximum flash rate density reveals that most oceanic total lightning maxima are related to nocturnal thunderstorms, while continental lightning tends to occur during the afternoon. Most of the principal continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development.

CORRESPONDING AUTHOR: Rachel Ifanger Albrecht, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo-SP, Brazil, E-mail: rachel.albrecht@iag.usp.br

A supplement to this article is available online (10.1175/BAMS-D-14-00193.2)

Supplementary Materials

    • Supplemental Materials (PDF 4.08 MB)
Save
  • Albrecht, R. I., S. J. Goodman, W. A. Petersen, D. E. Buechler, E. C. Bruning, R. J. Blakeslee, and H. J. Christian, 2011a: The 13 years of TRMM Lightning Imaging Sensor: From individual flash characteristics to decadal tendencies. Extended Abstracts, 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, ICAE, 1–4. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015779.pdf.]

  • Albrecht, R. I., C. A. Morales, and M. A. F. Silva Dias, 2011b: Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res., 116, D08209, doi:10.1029/2010JD014756.

    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., D. J. Cecil, and S. J. Goodman, 2014: Lightning. Encyclopedia of Remote Sensing, E. G. Njoku, Ed., Encyclopedia of Earth Sciences Series, Springer, 339–344.

  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr., 5, 91102.

  • Amador, J. A., 2008: The intra-Americas sea low-level jet: Overview and future research. Ann. N. Y. Acad. Sci., 1146, 153188, doi:10.1196/annals.1446.012.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and S. E. Nicholson, 1998: Analysis of convective activity and its relationship to the rainfall over the Rift Valley Lakes of East Africa during 1983–90 using the Meteosat infrared channel. J. Appl. Meteor., 37, 12501264, doi:10.1175/1520-0450(1998)037<1250:AOCAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balas, N., S. E. Nicholson, and D. Klotter, 2007: The relationship of rainfall variability in west central Africa to sea–surface temperature fluctuations. Int. J. Climatol., 27, 13351349, doi:10.1002/joc.1456.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, doi:10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt, 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4, 2951, doi:10.5194/nhess-4-29-2004.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Blakeslee, R, and W. Koshak, 2016: LIS on ISS: Expanded global coverage and enhanced applications, Earth Obs., 28, 414. [Available online at http://eospso.nasa.gov/sites/default/files/eo_pdfs/May_June_2016_color%20508.pdf.]

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. J. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, doi:10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, C. E. P., 1925: The distribution of thunderstorms over the globe. Geophys. Mem., 24, 147164.

  • Buechler, D. E., W. J. Koshak, H. J. Christian, and S. J. Goodman, 2014: Assessing the performance of the Lightning Imaging Sensor (LIS) using deep convective clouds. Atmos. Res., 135–136, 397403, doi:10.1016/j.atmosres.2012.09.008.

    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., M. G. Nicora, and E. E. Ávila, 2012: Characterization of the lightning activity of “Relámpago del Catatumbo.” J. Atmos. Sol. Terr. Phys., 77, 241247, doi:10.1016/j.jastp.2012.01.013.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1992: Lightning Imaging Sensor (LIS) for the Earth Observing System. NASA Tech. Memo. 4350, 36 pp.

  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Codazzi, A., 1841: Resuìmen de la Geografiìa de Venezuela. Impr. de H. Fournier y compia, 648 pp.

  • Court, A., and J. F. Griffiths, 1982: Thunderstorm climatology. Thunderstorm Morphology and Dynamics of Thunderstorms: A Social, Scientific, and Technological Documentary, E. Kessler, Ed., University of Oklahoma Press, 11–52.

  • Falcon, N., 2011: Phenomenology and microphysics of lightning flash of the Catatumbo River (Venezuela). Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, ICAE, 1–4.

  • Flohn, H., and K. Fraedrich, 1966: Tagesperiodische zirkulation und niederschlagsverteilung am Victoria-See (Ostafrika) [The daily periodic circulation and distribution of rainfall over Lake Victoria (East Africa)]. Meteor. Rundsch., 19, 157165.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Relationships between lightning and properties of convective cloud clusters. Geophys. Res. Lett., 34, L15705, doi:10.1029/2007GL030227.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 31573171, doi:10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and H. J. Christian, 1993: Global observations of lightning. Atlas of Satellite Observations Related to Global Change, R. J. Gurney, J. L. Foster, and C. L. Parkinson, Eds., Cambridge University Press, 191–219.

  • Goodman, S. J., D. E. Buechler, K. Knupp, K. Driscoll, and E. W. McCaul Jr., 2000: The 1997–98 El Nino event and related wintertime lightning variations in the southeastern United States. Geophys. Res. Lett., 27, 541544, doi:10.1029/1999GL010808.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, and E. W. McCaul Jr., 2007: Lightning. Our Changing Planet: The View from Space, M. King et al., Eds., Cambridge University Press, 44–52.

  • Heckman, S. J., E. Williams, and B. Boldi, 1998: Total global lightning inferred from Schumann resonance measurements. J. Geophys. Res., 103, 31 77531 779, doi:10.1029/98JD02648.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, doi:10.1175/2008MWR2525.1.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., and Y. Kuleshov, 2006: Geographical and seasonal characteristics of the relationship between lightning ground flash density and rainfall within the continent of Australia. Atmos. Res., 79, 114, doi:10.1016/j.atmosres.2005.03.004.

    • Search Google Scholar
    • Export Citation
  • Kandalgaonkar, S. S., 2003: Diurnal variation of lightning activity over the Indian region. Geophys. Res. Lett., 30, 2022, doi:10.1029/2003GL018005.

    • Search Google Scholar
    • Export Citation
  • Kandalgaonkar, S. S., 2005: Spatio-temporal variability of lightning activity over the Indian region. J. Geophys. Res., 110, D11108, doi:10.1029/2004JD005631.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., A. Ohta, M. Katsumata, S. Mori, S. Satoh, and H. Ueda, 2005: Seasonal transition of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett., 32, L14710, doi:10.1029/2005GL022986.

    • Search Google Scholar
    • Export Citation
  • Kotaki, M., 1984: Global distribution of atmospheric radio noise derived from thunderstorm activity. J. Atmos. Terr. Phys., 46, 867877, doi:10.1016/0021-9169(84)90026-6.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., D. Mackerras, and M. Darveniza, 2006: Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia. J. Geophys. Res., 111, D19105, doi:10.1029/2005JD006982.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993: Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121, 22542263, doi:10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, doi:10.1002/qj.49712353807.

    • Search Google Scholar
    • Export Citation
  • Lal, D. M., and S. D. Pawar, 2009: Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons. Atmos. Res., 92, 402410, doi:10.1016/j.atmosres.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Liu, C., D. Cecil, and E. J. Zipser, 2011: Relationships between lightning flash rates and passive microwave brightness temperatures at 85 and 37 GHz over the tropics and subtropics. J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

    • Search Google Scholar
    • Export Citation
  • Lott, J. N., R. Vose, S. A. Del Greco, T. F. Ross, S. Worley, and J. L. Comeaux, 2008: The integrated surface database: Partnerships and progress. Proc. 24th Conf. on IIPS, New Orleans, LA, Amer. Meteor. Soc., 3B.5. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_131387.htm.]

  • Mackerras, D., M. Darveniza, R. E. Orville, E. R. Williams, and S. J. Goodman, 1998: Global lightning: Total, cloud and ground flash estimates. J. Geophys. Res., 103, 19 79119 809, doi:10.1029/98JD01461.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003a: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, doi:10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003b: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, doi:10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinez, M., J. Ramirez, and R. Montano, 2003: Actividad de rayos en Venezuela, utilizando la data del sensor óptico (LIS) del proyecto TRMM de la NASA. Rev. Téc. Fac. Ing., Univ. Zulia, 26, 127139.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., A. J. Busalacchi, S. Nigam, and A. Ruiz-Barradas, 2008: Winter and summer structure of the Caribbean low-level jet. J. Climate, 21, 12601276, doi:10.1175/2007JCLI1855.1.

    • Search Google Scholar
    • Export Citation
  • Muñoz, Á. G., J. Daz-Lobatón, X. Chourio, and M. J. Stock, 2016: Seasonal prediction of lightning activity in north western Venezuela: Large-scale versus local drivers. Atmos. Res., 172-173, 147162, doi:10.1016/j.atmosres.2015.12.018.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., E. N. Anagnostou, and R. F. Adler, 2000: A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. J. Appl. Meteor., 39, 4256, doi:10.1175/1520-0450(2000)039<0042:AYCOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and A. M. Anders, 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophys. Res. Lett., 36, L15815, doi:10.1029/2009GL038026.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson and E. O. Odada, Eds., CRC Press, 25–56.

  • Nicholson, S. E., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171, doi:10.1007/s00382-008-0514-3.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and X. Yin, 2002: Mesoscale patterns of rainfall, cloudiness and evaporation over the Great Lakes of East Africa. The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity, E. O. Odada and D. O. Olago, Eds., Advances in Global Change Research Series, Vol. 12, Springer, 93–119.

  • Nicholson, S. E., and J. P. Grist, 2003: The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J. Climate, 16, 10131030, doi:10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653, doi:10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Fu, M. Chen, and R. Blakeslee, 2006: Intraseasonal forcing of convection and lightning activity in the southern Amazon as a function of cross-equatorial flow. J. Climate, 19, 31803196, doi:10.1175/JCLI3788.1.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., and Coauthors, 2005: The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon. Wea. Rev., 133, 228240, doi:10.1175/MWR-2853.1.

    • Search Google Scholar
    • Export Citation
  • Pulwarty, R. S., R. G. Barry, C. M. Hurst, K. Sellinger, and L. F. Mogollon, 1998: Precipitation in the Venezuelan Andes in the context of regional climate. Meteor. Atmos. Phys., 67, 217237, doi:10.1007/BF01277512.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze, 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, doi:10.1175/MWR-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, doi:10.1002/2014GL061767.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett., 33, L18705, doi:10.1029/2006GL027531.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, doi: 10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2007: Variability of the Caribbean low-level jet and its relations to climate. Climate Dyn., 29, 411422, doi:10.1007/s00382-007-0243-z.

    • Search Google Scholar
    • Export Citation
  • Williams, E., 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, doi:10.1029/2003JD003833.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and S. J. Heckman, 1993: The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the earth. J. Geophys. Res., 98, 5221, doi:10.1029/92JD02642.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Search Google Scholar
    • Export Citation
  • Williams, E., K. Rothkin, D. Stevenson, and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39, 22232230, doi:10.1175/1520-0450(2001)040<2223:GLVCBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • WMO, 1953: World Distribution of thunderstorm days. Part I: Tables. WMO Publication 21, TP 6, xxx pp.

  • Yin, X., S. E. Nicholson, and M. B. Ba, 2000: On the diurnal cycle of cloudiness over Lake Victoria and its influence on evaporation from the lake. Hydrol. Sci. J., 45, 407424, doi:10.1080/02626660009492338.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15155 4696 348
PDF Downloads 8896 2702 208