• Bintanja, R., , R. G. Graversen, , and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, doi:10.1038/ngeo1285.

    • Search Google Scholar
    • Export Citation
  • Boé, J., , A. Hall, , and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695, doi:10.1175/2009JCLI2885.1.

    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., , and J. C. Stroeve, 2015: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett., 42, 44394446, doi:10.1002/2015GL063775.

    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., , D. L. Wu, , and C.-L. Shie, 2015: Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. J. Geophys. Res. Atmos., 120, 68656881, doi:10.1002/2015JD023258.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., , S. T. Stegall, , and X. Zeng, 2015: A climatology of tropospheric humidity inversions in five reanalyses. Atmos. Res., 153, 165187, doi:10.1016/j.atmosres.2014.08.005.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and et al. , 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Dang, H. V. T., , B. Lambrigtsen, , and E. Manning, Eds., 2012: AIRS/AMSU/HSB version 6 level 2 performance and test report. Version 1.2, Jet Propulsion Laboratory, California Institute of Technology, 197 pp. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L2_Performance_and_Test_Report.pdf.]

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., , U. Willén, , K.-G. Karlsson, , and C. G. Jones, 2010: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos. Chem. Phys., 10, 55655572, doi:10.5194/acp-10-5565-2010.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., , J. Sedlar, , and M. Tjernström, 2011: Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes. Atmos. Chem. Phys., 11, 98139823, doi:10.5194/acp-11-9813-2011.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., , M. Tjernström, , M. Caian, , M. A. Thomas, , B. H. Kahn, , and E. J. Fetzer, 2012: Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites. Atmos. Chem. Phys., 12, 10 53510 544, doi:10.5194/acp-12-10535-2012.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., , J. Sedlar, , T. Koenigk, , and E. J. Fetzer, 2013: The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012. Atmos. Chem. Phys., 13, 74417450, doi:10.5194/acp-13-7441-2013.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., , T. Vihma, , and E. Maksimovich, 2014: Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmos. Chem. Phys., 14, 13 57113 600, doi:10.5194/acp-14-13571-2014.

    • Search Google Scholar
    • Export Citation
  • Garrett, T., , and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789, doi:10.1038/nature04636.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., , T. Maurtisen, , S. Drijfhout, , M. Tjernström, , and S. Mårtensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, doi:10.1007/s00382-010-0809-z.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. , doi:10.1017/CBO9781107415324.

  • Jin, H., , and S. L. Nasiri, 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol, 53, 10121027, doi:10.1175/JAMC-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol., 10, 537548, doi:10.1002/joc.3370100509.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., , M. C. Serreze, , and R. C. Schnell, 1992a: Tropospheric low-level temperature inversions in the Canadian Arctic. Atmos.–Ocean, 30, 511529, doi:10.1080/07055900.1992.9649453.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., , S. M. Skony, , M. C. Serreze, , S. Shiotani, , and R. C. Schnell, 1992b: In situ meteorological sounding archives for Arctic studies. Bull. Amer. Meteor. Soc., 73, 18241830, doi:10.1175/1520-0477(1992)073<1824:ISMSAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., , D. A. Martinez, , and N. A. Zaitseva, 1996: Long-term variability in the low-level inversion layer over the Arctic Ocean. Int. J. Climatol., 16, 12971313, doi:10.1002/(SICI)1097-0088(199611)16:11<1297::AID-JOC86>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, doi:10.5194/acp-14-399-2014.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M. L., , R. G. Graversen, , and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, doi:10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , and T. L’Ecuyer, 2013: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos., 118, 72197236, doi:10.1002/jgrd.50489.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., , and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., , G. F. Cunningham, , M. Wensnahan, , I. Rigor, , H. J. Zwally, , and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Law, K. S., and et al. , 2014: Arctic air pollution: New insights from POLARCAT-IPY. Bull. Amer. Meteor. Soc., 95, 18731895, doi:10.1175/BAMS-D-13-00017.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key., 2014: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ. Res. Lett., 9, 044002, doi:10.1088/1748-9326/9/4/044002.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , J. R. Key, , A. Schweiger, , and J. Francis, 2006: Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the Arctic, 1980–96. J. Climate, 19, 49024913, doi:10.1175/JCLI3915.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , J. R. Key, , Z. Liu, , X. Wang, , and S. J. Vavrus, 2012: A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett., 39, L05705, doi:10.1029/2012GL051251.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., , and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453456, doi:10.1038/nature04449.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., , B. H. Kahn, , M. A. Lazzara, , P. Rowe, , and V. P. Walden, 2015: Variability in AIRS-retrieved cloud amount and thermodynamic phase over west versus east Antarctica influenced by the SAM. Geophys. Res. Lett., 42, 12591267, doi:10.1002/2014GL062285.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., , C. Fowler, , J. Stroeve, , S. Drobot, , J. Zwally, , D. Yi, , and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, doi:10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., , J. Stroeve, , C. Fowler, , and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, doi:10.1029/2011GL047735.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , C. Deser, , R. Tomas, , and J. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24, 47334740, doi:10.1175/2011JCLI3968.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. de Boer, , G. Feingold, , J. Harrington, , M. D. Shupe, , and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Mortin, J., , S. E. L. Howell, , L. Wang, , C. Derksen, , G. Svensson, , R. G. Graversen, , and T. M. Schrøder, 2014: Extending the QuikSCAT record of seasonal melt-freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ., 141, 214230, doi:10.1016/j.rse.2013.11.004.

    • Search Google Scholar
    • Export Citation
  • Nygård, T., , T. Valkonen, , and T. Vihma, 2014: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings. Atmos. Chem. Phys., 14, 19591971, doi:10.5194/acp-14-1959-2014.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T., , J. Boé, , A. Hall, , and E. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, doi:10.1007/s00382-010-0756-8.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, doi:10.1007/s00382-011-1196-9.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , C. W. Fairall, , E. L Andreas, , P. S. Guest, , and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Qiu, S., , X. Dong, , B. Xi, , and J.-L. F. Li, 2015: Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. J. Geophys. Res. Atmos., 120, 77377746, doi:10.1002/2014JD023022.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., , R. W. Lindsay, , S. Vavrus, , and J. A. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 20, 47994810, doi:10.1175/2008JCLI2156.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , C. Deser, , I. Simmonds, , and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., 2014: Implications of limited liquid water path on static mixing within Arctic low-level clouds. J. Appl. Meteor. Climatol., 53, 27752789, doi:10.1175/JAMC-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , and M. Tjernström, 2009: Stratiform cloud—Inversion characterization during the Arctic melt season. Bound.-Layer Meteor., 132, 455474, doi:10.1007/s10546-009-9407-1.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , and A. Devasthale, 2012: Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic. J. Geophys. Res., 117, D19111, doi:10.1029/2012JD017754.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , M. D. Shupe, , and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, doi:10.1175/JCLI-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , J. D. Kahl, , and R. C. Schnell, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting stations. J. Climate, 5, 615630, doi:10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and et al. , 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bull. Amer. Meteor. Soc., 89, 15491562, doi:10.1175/2008BAMS2378.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , V. P. Walden, , E. Eloranta, , T. Uttal, , J. R. Campbell, , S. M. Starkweather, , and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, doi:10.1175/2010JAMC2467.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , P. O. G. Persson, , I. M. Brooks, , M. Tjernstrom, , J. Sedlar, , T. Mauritsen, , S. Sjogren, , and C. Leck, 2013: Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos. Chem. Phys., 13, 93799400, doi:10.5194/acp-13-9379-2013.

    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., , J. Sedlar, , M. Tjernström, , M. D. Shupe, , I. M. Brooks, , and P. O. G. Persson, 2014: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmos. Chem. Phys., 14, 122573122592, doi:10.5194/acp-14-12573-2014.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. Serreze, , S. Drobot, , S. Gearheard, , M. Holland, , J. Maslanik, , W. Meier, , and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 1314, doi:10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431433, doi:10.1002/qj.380.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , C. Leck, , P. O. G. Persson, , M. L. Jensen, , S. P. Oncley, , and A. Targino, 2004: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment (AOE-2001). Bull. Amer. Meteor. Soc., 85, 13051321, doi:10.1175/BAMS-85-9-1305.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2005: Modeling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models with data from the SHEBA project. Bound.-Layer Meteor., 117, 337381, doi:10.1007/s10546-004-7954-z.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, doi:10.5194/acp-14-2823-2014.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and et al. , 2002: Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255276, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., , T. Kilpeläinen, , M. Manninen, , A. Sjöblom, , E. Jakobson, , T. Palo, , J. Jaagus, , and M. Maturilli, 2011: Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Adv. Meteor., 2011, 486807, doi:10.1155/2011/486807.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and et al. , 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, doi:10.5194/acp-14-9403-2014.

    • Search Google Scholar
    • Export Citation
  • Vowinkel, E., , and S. Orvig, 1970: The climate of the North Polar Basin. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 129–226.

  • Walsh, J. E., , and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, doi:10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1936: Cooling in the lower atmosphere and the structure of polar continental air. Mon. Wea. Rev., 64, 122136, doi:10.1175/1520-0493(1936)64<122:CITLAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, S., , E. J. Fetzer, , M. Schreier, , G. Manipon, , E. F. Fishbein, , B. H. Kahn, , Q. Yue, , and F. W. Irion, 2015: Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity. J. Geophys. Res. Atmos., 120, 18801901, doi:10.1002/2014JD022440.

    • Search Google Scholar
    • Export Citation
  • Woods, C., , R. Caballero, , and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, doi:10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., , B. H. Kahn, , E. J. Fetzer, , and J. Teixeira, 2011: Relationship between marine boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP. J. Geophys. Res., 116, D18212, doi:10.1029/2011JD016136.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and D. J. Seidel, 2011: Challenges in estimating trends in Arctic surface-based inversions from radiosonde data. Geophys. Res. Lett., 38, L17806, doi:10.1029/2011GL048728.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , D. J. Seidel, , J.-C. Golaz, , C. Deser, , and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186, doi:10.1175/2011JCLI4004.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 11
PDF Downloads 43 43 6

A Decade of Spaceborne Observations of the Arctic Atmosphere: Novel Insights from NASA’s AIRS Instrument

View More View Less
  • 1 Atmospheric Remote Sensing Unit, Research and Development, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
  • | 2 Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 5 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models.

Observations from the hyperspectral Atmospheric Infrared Sounder (AIRS) instrument on board the National Aeronautics and Space Administration (NASA)’s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies—all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.

CORRESPONDING AUTHOR: Abhay Devasthale, Atmospheric Remote Sensing Unit, Research and Development, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 60176 Norrköping, Sweden, E-mail: abhay.devasthale@smhi.se

A supplement to this article is available online (10.1175/BAMS-D-14-00202.2)

Abstract

Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models.

Observations from the hyperspectral Atmospheric Infrared Sounder (AIRS) instrument on board the National Aeronautics and Space Administration (NASA)’s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies—all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.

CORRESPONDING AUTHOR: Abhay Devasthale, Atmospheric Remote Sensing Unit, Research and Development, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 60176 Norrköping, Sweden, E-mail: abhay.devasthale@smhi.se

A supplement to this article is available online (10.1175/BAMS-D-14-00202.2)

Supplementary Materials

    • Supplemental Materials (PDF 6.39 MB)
Save