• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., , R. M. S. Fernandes, , and J. M. F. Maia, 2011: GNSS precipitable water vapor from an Amazonian rain forest flux tower. J. Atmos. Oceanic Technol., 28, 11921198, doi:10.1175/JTECH-D-11-00082.1.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., , S. I. Gutman, , K. L. Holub, , and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, doi:10.1002/grl.50573.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., , C. Minjarez, , Y. Serra, , A. Quintanar, , L. Alatorre, , A. Granados, , E. Vázquez, , and J. Braun, 2014: Mexican GPS tracks convection from North American monsoon. Eos, Trans. Amer. Geophys. Union, 95, 61, doi:10.1002/2014EO070001.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and et al. , 2015: The Amazon dense GNSS meteorological network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, doi:10.1175/BAMS-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., , and E. H. Berbery, 2008: The diurnal cycle of precipitation over the North American monsoon region during the NAME 2004 field campaign. J. Climate, 21, 771787, doi:10.1175/2007JCLI1642.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and et al. , 2003: The use of GPS measurements for water vapor determination. Bull. Amer. Meteor. Soc., 84, 12491258, doi:10.1175/BAMS-84-9-1249.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., , and M. S. Fox-Rabinovitz, 2003: Multiscale diagnosis of the North American monsoon system using a variable-resolution GCM. J. Climate, 16, 19291947, doi:10.1175/1520-0442(2003)016<1929:MDOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., , S. Businger, , T. A. Herring, , C. Rocken, , R. Anthes, , and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., III, , C. L. Castro, , S. L. Mullen, , A. C. Comrie, , and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, doi:10.1175/2009JCLI2487.1.

    • Search Google Scholar
    • Export Citation
  • Braun, J., and et al. , 2012: Focused study of interweaving hazards across the Caribbean. Eos, Trans. Amer. Geophys. Union, 93, 89, doi:10.1029/2012EO090001.

    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, doi:10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brito-Castillo, L., , A. V. Douglas, , A. Layva-Contreras, , and D. Lluch-Belda, 2003: The effect of large-scale circulation on precipitation and streamflow in the Gulf of California continental watershed. Int. J. Climatol., 23, 751768, doi:10.1002/joc.913.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., , H.-I. Chang, , F. Dominguez, , C. Carrillo, , J.-K. Schemm, , and H.-M. H. Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, doi:10.1175/JCLI-D-11-00441.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. M. J. Suarez, Ed., Technical Report Series on Global Modeling and Data Assimilation, Vol. 15, NASA Tech. Memo. NASA/TM-1999–104606, 40 pp.

  • Chou, M.-D., , M. J. Suarez, , X.-Z. Liang, , and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. M. J. Suarez, Ed., Technical Report Series on Global Modeling and Data Assimilation, Vol. 19, NASA Tech. Memo. NASA/TM-2001–104606, 56 pp.

  • Douglas, M. W., , and J. C. Leal, 2003: Summertime surges over the Gulf of California: Aspects of their climatology, mean structure, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Wea. Forecasting, 18, 5574, doi:10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , E. R. Vivoni, , C. J. Watts, , and J. C. Rodríguez, 2007: Submesoscale spatiotemporal variability of North American monsoon rainfall over complex terrain. J. Climate, 20, 17511773, doi:10.1175/JCLI4093.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , A. Jimenez, , C. J. Watts, , J. Garatuza-Payan, , and W. J. Shuttleworth, 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment Event Rain Gauge Network. Mon. Wea. Rev., 132, 29382953, doi:10.1175/MWR2838.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , L. Brito-Castillo, , and W. J. Shuttleworth, 2006: Hydroclimatology of the North American monsoon region in northwest México. J. Hydrol., 316, 5370, doi:10.1016/j.jhydrol.2005.04.021.

    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., , S. Sahm, , S. G. Benjamin, , B. Schwartz, , K. L. Holub, , J. Q. Stewart, , and T. L. Smith, 2004: Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA Forecast Systems Laboratory: Impact on weather forecasts. J. Meteor. Soc. Japan, 82, 351360, doi:10.2151/jmsj.2004.351.

    • Search Google Scholar
    • Export Citation
  • Hales, J., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 298306, doi:10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., , M. Melsness, , and R. Raddatz, 2010: Observed and modeled growing-season diurnal precipitable water vapor in south-central Canada. J. Appl. Meteor. Climatol., 49, 23012314, doi:10.1175/2010JAMC2443.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., , and D. Gochis, 2007: Synthesis of results from the North American Monsoon Experiment (NAME) process study. J. Climate, 20, 16011607, doi:10.1175/JCLI4081.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., , W. Shi, , and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, doi:10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Johnson, R., , P. Ciesielski, , and B. McNoldy, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20, 16281648, doi:10.1175/JCLI4087.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , Y.-R. Guo, , and E. R. Westwater, 1993: Assimilation of precipitable water measurements into a mesoscale numerical model. Mon. Wea. Rev., 121, 12151238, doi:10.1175/1520-0493(1993)121<1215:AOPWMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , D. K. Adams, , and M. Leuthold, 2008a: GPS observations of precipitable water and implications for the predictability of precipitation during the North American Monsoon. CLIVAR Exchanges, No. 45, International CLIVAR Project Office, Southampton, United Kingdom, 14, 19–21.

  • Kursinski, E. R., and et al. , 2008b: Water vapor and surface observations in northwestern Mexico during the 2004 NAME Enhanced Observing Period. Geophys. Res. Lett., 35, L03815, doi:10.1029/2007GL031404.

    • Search Google Scholar
    • Export Citation
  • Ladwig, W. C., , and D. J. Stensrud, 2009: Relationship between tropical easterly waves and precipitation during the North American monsoon. J. Climate, 22, 258271, doi:10.1175/2008JCLI2241.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T., , D. Ahijevych, , S. Nesbitt, , R. E. Carbone, , S. A. Rutledge, , and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, doi:10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Leblanc, T., and et al. , 2011: Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: Overview of campaign operations and results. Atmos. Meas. Tech., 4, 25792605, doi:10.5194/amt-4-2579-2011.

    • Search Google Scholar
    • Export Citation
  • Li, J., , S. Sorooshian, , W. Higgins, , X. Gao, , B. Imam, , and K. Hsu, 2008: Influence of spatial resolution on diurnal variability during the North American monsoon. J. Climate, 21, 39673988, doi:10.1175/2008JCLI2022.1.

    • Search Google Scholar
    • Export Citation
  • Minjarez-Sosa, C. M., , C. L. Castro, , K. L. Cummins, , E. P. Krider, , and J. Waissmann, 2012: Toward development of improved QPE in complex terrain using cloud-to-ground lightning data: A case study for the 2005 monsoon in southern Arizona. J. Hydrometeor., 13, 18551873, doi:10.1175/JHM-D-11-0129.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , D. J. Gochis, , and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, doi:10.1175/2008JHM939.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., , and R. H. Johnson, 2012: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, doi:10.1175/JAS-D-11-0223.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., , and R. H. Johnson, 2013: Dynamics of a simulated North American monsoon gulf surge event. Mon. Wea. Rev., 141, 32383253, doi:10.1175/MWR-D-12-00294.1.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., , G. Lister, , and C. E. Birch, 2014: Modelling the diurnal cycle of tropical convection across the “grey zone.” Quart. J. Roy. Meteor. Soc., 140, 491499, doi:10.1002/qj.2145.

    • Search Google Scholar
    • Export Citation
  • Pytlak, E., , M. Goering, , and A. Bennett, 2005: Upper tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3. [Available online at https://ams.confex.com/ams/Annual2005/webprogram/Paper85393.html.]

  • Raja, M. K. R. V., , S. I. Gutman, , J. G. Yoe, , L. M. McMillin, , and J. Zhao, 2008: The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J. Atmos. Oceanic Technol., 25, 416428, doi:10.1175/2007JTECHA889.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, P. J., , and R. H. Johnson, 2007: Analysis of the 13–14 July gulf surge event during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 135, 30983117, doi:10.1175/MWR3450.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., , S. A. Rutledge, , T. J. Lang, , P. E. Ciesielski, , and S. M. Saleeby, 2008: Elevation-dependent trends in precipitation observed during NAME. Mon. Wea. Rev., 136, 49624979, doi:10.1175/2008MWR2397.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., , S. A. Rutledge, , and T. J. Lang, 2011: Investigation of microphysical processes occurring in isolated convection during NAME. Mon. Wea. Rev., 139, 424443, doi:10.1175/2010MWR3494.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., , S. A. Rutledge, , and T. J. Lang, 2012: Investigation of microphysical processes occurring in organized convection during NAME. Mon. Wea. Rev., 140, 21682187, doi:10.1175/MWR-D-11-00124.1.

    • Search Google Scholar
    • Export Citation
  • Seastrand, S., , Y. Serra, , C. Castro, , and E. A. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, doi:10.1002/joc.4104.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. , doi:10.5065/D68S4MVH.

  • Tewari, M., and et al. , 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Wall, C. L., , E. J. Zipser, , and C. Liu, 2012: A regional climatology of monsoonal precipitation in the southwestern United States using TRMM. J. Hydrometeor., 13, 310323, doi:10.1175/JHM-D-11-031.1.

    • Search Google Scholar
    • Export Citation
  • Zavaleta, F., , and R. Vargas, 2012: WB/Mexico: Modernization of National Meteorological Service for improved climate change adaptation. Accessed 2 February 2016, World Bank. [Available online at www.worldbank.org/en/news/2012/05/17/Mexico-modernization-national-meteorological-service-for-improved-climate-change-adaptation.]

  • Zehnder, J. A., 2004: Dynamic mechanisms of the gulf surge. J. Geophys. Res., 109, D10107, doi:10.1029/2004JD004616.

  • Zehnder, J. A., , and Coauthors, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 25272546, doi:10.1175/MWR3194.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 10
PDF Downloads 31 31 5

The North American Monsoon GPS Transect Experiment 2013

View More View Less
  • 1 University of Washington, Seattle, Washington
  • | 2 Universidad Nacional Autónoma de México, Mexico City, Mexico
  • | 3 Universidad de Sonora, Hermosillo, Mexico
  • | 4 The University of Arizona, Tucson, Arizona
  • | 5 Universidad Nacional Autónoma de México, Mexico City, Mexico
  • | 6 Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
  • | 7 Universidad Autónoma de Sinaloa, Culiacán, Mexico
  • | 8 National Oceanic and Atmospheric Administration, Boulder, Colorado
  • | 9 University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.

CORRESPONDING AUTHOR: Yolande L. Serra, University of Washington, Box 355672, Seattle, WA 98105, E-mail: yserra@uw.edu

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2016-01-39

Abstract

Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.

CORRESPONDING AUTHOR: Yolande L. Serra, University of Washington, Box 355672, Seattle, WA 98105, E-mail: yserra@uw.edu

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2016-01-39

Save