Crowdsourcing the El Reno 2013 Tornado: A New Approach for Collation and Display of Storm Chaser Imagery for Scientific Applications

Anton Seimon Department of Geography and Planning, Appalachian State University, Boone, North Carolina

Search for other papers by Anton Seimon in
Current site
Google Scholar
PubMed
Close
,
John T. Allen International Research Institute for Climate and Society, Columbia University, New York, New York

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
,
Tracie A. Seimon Wildlife Conservation Society, New York, New York

Search for other papers by Tracie A. Seimon in
Current site
Google Scholar
PubMed
Close
,
Skip J. Talbot Springfield, Illinois

Search for other papers by Skip J. Talbot in
Current site
Google Scholar
PubMed
Close
, and
David K. Hoadley Falls Church, Virginia

Search for other papers by David K. Hoadley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 31 May 2013 El Reno, Oklahoma, tornado is used to demonstrate how a video imagery database crowdsourced from storm chasers can be time-corrected and georeferenced to inform severe storm research. The tornado’s exceptional magnitude (∼4.3-km diameter and ∼135 m s−1 winds) and the wealth of observational data highlight this storm as a subject for scientific investigation. The storm was documented by mobile research and fixed-base radars, lightning detection networks, and poststorm damage surveys. In addition, more than 250 individuals and groups of storm chasers navigating the tornado captured imagery, constituting a largely untapped resource for scientific investigation.

The El Reno Survey was created to crowdsource imagery from storm chasers and to compile submitted materials in a quality-controlled, open-access research database. Solicitations to storm chasers via social media and e-mail yielded 93 registrants, each contributing still and/or video imagery and metadata. Lightning flash interval is used for precise time calibration of contributed video imagery; when combined with georeferencing from open-source geographical information software, this enables detailed mapping of storm phenomena. A representative set of examples is presented to illustrate how this standardized database and a web-based visualization tool can inform research on tornadoes, lightning, and hail. The project database offers the largest archive of visual material compiled for a single storm event, accessible to the scientific community through a registration process. This approach also offers a new model for poststorm data collection, with instructional materials created to facilitate replication for research into both past and future storm events.

CORRESPONDING AUTHOR: Dr. Anton Seimon, Dept. of Geography and Planning, ASU Box 32066, Appalachian State University, Boone, NC 28608, E-mail: anton.seimon@gmail.com

Abstract

The 31 May 2013 El Reno, Oklahoma, tornado is used to demonstrate how a video imagery database crowdsourced from storm chasers can be time-corrected and georeferenced to inform severe storm research. The tornado’s exceptional magnitude (∼4.3-km diameter and ∼135 m s−1 winds) and the wealth of observational data highlight this storm as a subject for scientific investigation. The storm was documented by mobile research and fixed-base radars, lightning detection networks, and poststorm damage surveys. In addition, more than 250 individuals and groups of storm chasers navigating the tornado captured imagery, constituting a largely untapped resource for scientific investigation.

The El Reno Survey was created to crowdsource imagery from storm chasers and to compile submitted materials in a quality-controlled, open-access research database. Solicitations to storm chasers via social media and e-mail yielded 93 registrants, each contributing still and/or video imagery and metadata. Lightning flash interval is used for precise time calibration of contributed video imagery; when combined with georeferencing from open-source geographical information software, this enables detailed mapping of storm phenomena. A representative set of examples is presented to illustrate how this standardized database and a web-based visualization tool can inform research on tornadoes, lightning, and hail. The project database offers the largest archive of visual material compiled for a single storm event, accessible to the scientific community through a registration process. This approach also offers a new model for poststorm data collection, with instructional materials created to facilitate replication for research into both past and future storm events.

CORRESPONDING AUTHOR: Dr. Anton Seimon, Dept. of Geography and Planning, ASU Box 32066, Appalachian State University, Boone, NC 28608, E-mail: anton.seimon@gmail.com
Save
  • Allen, J. T., 2012: Supercell storms: Melbourne’s white Christmas 2011. Bull. Aust. Meteor. Oceanogr. Soc., 25, 4751.

  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958, doi:10.1175/MWR-D-11-00285.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. Wakimoto, K. M. Butler, H. B. Bluestein, K. J. Thiem, J. C. Snyder, J. Houser, and J. Wurman, 2014: Aerial damage survey and high resolution dual-polarization radar analysis of the 2013 El Reno tornado. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 13.3. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254162.html.]

  • Bedka, K. M., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteor., 13, 3245.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, doi:10.1175/WAF-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Coy, J. J., K. M. Calhoun, and A. Seimon, 2016: A comparison of lightning flashes observed by ground-based detection networks and video. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper283144.html.]

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Draper, R., and C. Peter, 2013: The last chase. Natl. Geogr. Mag., 2013 (November), 237. [Available online at http://ngm.nationalgeographic.com/2013/11/biggest-storm/draper-text.]

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, doi:10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. L. Heinselman, D. R. MacGorman, and E. C. Bruning, 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 139, 18091825, doi:10.1175/2010MWR3574.1.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., and H. B. Bluestein, 2001: Tornadoes, tornadic thunderstorms, and photogrammetry: A review of the contributions by TT Fujita. Bull. Amer. Meteor. Soc., 82, 7396, doi:10.1175/1520-0477(2001)082<0073:TTTAPA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1960: A detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Weather Bureau Rep. 42, U.S. Government Printing Office, 67 pp.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1960: Wind speed and air flow patterns in the Dallas Tornado of April 2, 1957. Mon. Wea. Rev., 88, 167180, doi:10.1175/1520-0493(1960)088<0167:WSAAFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus Jr., and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, doi:10.1175/2010MWR3201.1.

    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and M. Austin, 2015: 31 May 2013 El Reno tornadoes: Advantages of rapid-scan phased-array radar data from a warning forecaster’s perspective. Wea. Forecasting, 30, 933956, doi:10.1175/WAF-D-14-00142.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Cummer, D. Petersen, L. Flores-Rivera, W. A. Lyons, D. MacGorman, and W. Beasley, 2015: Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm. J. Geophys. Res. Atmos., 120, 33543369, doi:10.1002/2014JD022600.

    • Search Google Scholar
    • Export Citation
  • Longmore, S., and Coauthors, 2015: An automated mobile phone photo relay and display concept applicable to operational severe weather monitoring. J. Atmos. Oceanic Technol., 32, 13561363, doi:10.1175/JTECH-D-14-00230.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., D. Burgess, G. Garfield, R. Smith, D. Speheger, J. Snyder, and H. Bluestein, 2014: Ground-based damage survey and radar analysis of the El Reno, Oklahoma tornado. Proc. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 13.1. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254342.html.]

  • NOAA, 2013: El Reno and Moore damage survey report. [Available online at www.srh.noaa.gov/oun/?n=events-20130531-stormdata.]

  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2016: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00073.1, in press.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, doi:10.1175/JTECH-D-12-00166.1.

    • Search Google Scholar
    • Export Citation
  • Pietrycha, A. E., S. F. Blair, T. J. Allison, D. R. Deroche, and R. V. Fritchie, 2009: Emerging technologies in the field to improve information in support of operations and research. Electron. J. Oper. Meteor., 10, 2009EJ2. [Available online at http://nwafiles.nwas.org/ej/pdf/2009-EJ2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, doi:10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Search Google Scholar
    • Export Citation
  • Strader, S. M., and W. Ashley, 2014: Cloud-to-ground lightning signatures of long-lived tornadic supercells on 27–28 April 2011. Phys. Geogr., 35, 273296, doi:10.1080/02723646.2014.918527.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936, doi:10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, doi:10.1175/WAF-D-15-0111.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, doi:10.1175/MWR-D-11-00142.1.

    • Search Google Scholar
    • Export Citation
  • van Tassel, E. L., 1955: The North Platte Valley tornado outbreak of June 27, 1955. Mon. Wea. Rev., 83, 255264, doi:10.1175/1520-0493(1955)083<0255:TNPVTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, doi:10.1175/2010MWR3568.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., N. T. Atkins, K. Butler, H. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, doi:10.1175/MWR-D-15-0034.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., D. W. Burgess, A. Seimon, and J. T. Allen, 2015: Rapid-scan dual-polarization WSR-88D observations of an Oklahoma hailstorm producing extremely-large hail. Proc. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 134. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper275689.html.]

  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, doi:10.1175/WAF-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, doi:10.1126/science.272.5269.1774.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835846, doi:10.1175/BAMS-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, doi:10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Young, J. R., 2010: Tensions grow between tornado scientists and storm chasers. Accessed September 2015. [Available online at http://chronicle.com/article/Tensions-Grow-Between-Tornado/65985/?key=TWx2JwQybnBFNHYzL3MTfyVSYXJ6dUxwOXdHZHsaY1pc.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3721 944 129
PDF Downloads 2715 551 43