Real-Time Simulation of the GOES-R ABI for User Readiness and Product Evaluation

Thomas J. Greenwald Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Thomas J. Greenwald in
Current site
Google Scholar
PubMed
Close
,
R. Bradley Pierce NOAA/National Environmental Satellite, Data, and Information Service, Madison, Wisconsin

Search for other papers by R. Bradley Pierce in
Current site
Google Scholar
PubMed
Close
,
Todd Schaack Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Todd Schaack in
Current site
Google Scholar
PubMed
Close
,
Jason Otkin Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason Otkin in
Current site
Google Scholar
PubMed
Close
,
Marek Rogal Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Marek Rogal in
Current site
Google Scholar
PubMed
Close
,
Kaba Bah Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Kaba Bah in
Current site
Google Scholar
PubMed
Close
,
Allen Lenzen Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Allen Lenzen in
Current site
Google Scholar
PubMed
Close
,
Jim Nelson Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jim Nelson in
Current site
Google Scholar
PubMed
Close
,
Jun Li Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jun Li in
Current site
Google Scholar
PubMed
Close
, and
Hung-Lung Huang Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Hung-Lung Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In support of the Geostationary Operational Environmental Satellite R series (GOES-R) program, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin–Madison is generating high quality simulated Advanced Baseline Imager (ABI) radiances and derived products in real time over the continental United States. These data are mainly used for testing data-handling systems, evaluating ABI-derived products, and providing training material for forecasters participating in GOES-R Proving Ground test bed activities. The modeling system used to generate these datasets consists of advanced regional and global numerical weather prediction models in addition to state-of-the-art radiative transfer models, retrieval algorithms, and land surface datasets. The system and its generated products are evaluated for the 2014 Pacific Northwest wildfires; the 2013 Moore, Oklahoma, tornado; and Hurricane Sandy. Simulated aerosol optical depth over the Front Range of Colorado during the Pacific Northwest wildfires was validated using high-density Aerosol Robotic Network (AERONET) measurements. The aerosol, cloud, and meteorological modeling system used to generate ABI radiances was found to capture the transport of smoke from the Pacific wildfires into the Front Range of Colorado and true-color imagery created from these simulated radiances provided visualization of the smoke plumes. Evaluation of selected simulated ABI-derived products for the Moore tornado and Hurricane Sandy cases was done using real-time GOES sounder/imager products produced at CIMSS. Results show that simulated ABI moisture and atmospheric stability products, cloud products, and red–green–blue (RGB) airmass composite imagery are well suited as proxy ABI data for user preparedness.

CORRESPONDING AUTHOR: Thomas J. Greenwald, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706, E-mail: tomg@ssec.wisc.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00007.2)

Abstract

In support of the Geostationary Operational Environmental Satellite R series (GOES-R) program, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin–Madison is generating high quality simulated Advanced Baseline Imager (ABI) radiances and derived products in real time over the continental United States. These data are mainly used for testing data-handling systems, evaluating ABI-derived products, and providing training material for forecasters participating in GOES-R Proving Ground test bed activities. The modeling system used to generate these datasets consists of advanced regional and global numerical weather prediction models in addition to state-of-the-art radiative transfer models, retrieval algorithms, and land surface datasets. The system and its generated products are evaluated for the 2014 Pacific Northwest wildfires; the 2013 Moore, Oklahoma, tornado; and Hurricane Sandy. Simulated aerosol optical depth over the Front Range of Colorado during the Pacific Northwest wildfires was validated using high-density Aerosol Robotic Network (AERONET) measurements. The aerosol, cloud, and meteorological modeling system used to generate ABI radiances was found to capture the transport of smoke from the Pacific wildfires into the Front Range of Colorado and true-color imagery created from these simulated radiances provided visualization of the smoke plumes. Evaluation of selected simulated ABI-derived products for the Moore tornado and Hurricane Sandy cases was done using real-time GOES sounder/imager products produced at CIMSS. Results show that simulated ABI moisture and atmospheric stability products, cloud products, and red–green–blue (RGB) airmass composite imagery are well suited as proxy ABI data for user preparedness.

CORRESPONDING AUTHOR: Thomas J. Greenwald, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706, E-mail: tomg@ssec.wisc.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00007.2)

Supplementary Materials

    • Supplemental Materials (ZIP 46.8 MB)
Save
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795, doi:10.1175/WAF-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J. F. Muller, and A. M. Thompson, 2000: Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, doi:10.1029/2000JD900384.

    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, F. Kong, and M. Xue, 2014: Evaluating the accuracy of planetary boundary layer and cloud microphysical parameterization schemes in a convection-permitting ensemble using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, doi:10.1175/MWR-D-13-00143.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dupont, R., and Coauthors, 2012: Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign. Atmos. Chem. Phys., 12, 169188, doi:10.5194/acp-12-169-2012.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2012: The GOES-R Proving Ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled online chemistry within the WRF model. Atmos. Environ., 39, 69576975, doi:10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Horne, R., 2014: Product definition and users’ guide (PUG). Volume 4: GOES-R rebroadcast (GRB). Harris Corporation, Melbourne, FL, 145 pp. [Available online at www.goes-r.gov/users/docs/PUG-GRB-vol4-verC.pdf.]

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koltunov, A., S. L. Ustin, and E. M. Prins, 2012: On timeliness and accuracy of wildfire detection by the GOES WF-ABBA algorithm over California during the 2006 fire season. Remote Sens. Environ., 127, 194209, doi:10.1016/j.rse.2012.09.001.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-K., J. A. Otkin, and T. J. Greenwald, 2014: Evaluating the accuracy of a high-resolution model simulation through comparison with MODIS observations. J. Appl. Meteor. Climatol., 53, 10461058, doi:10.1175/JAMC-D-13-0140.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G., 2007: GEOCAT manual: GEOCAT version 0.5. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 30 pp. [Available online at ftp://ftp.ssec.wisc.edu/pub/geocat/old/version_0_5/geocat_manual_v0_5.pdf.]

  • McMillan, W. W., and Coauthors, 2010: An observational and modeling strategy to investigate the impact of remote sources on local air quality: A Houston, Texas, case study from the Second Texas Air Quality Study (TexAQS II). J. Geophys. Res., 115, D01301, doi:10.1029/2009JD011973.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., C. C. Schmidt, T. J. Schmit, and D. W. Hillger, 2012: A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens., 33, 39994028, doi:10.1080/01431161.2011.637529.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102D, 16,66316,682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Natarajan, M., and Coauthors, 2012: Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008. J. Geophys. Res., 117, D06307, doi:10.1029/2011JD016584.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and T. J. Greenwald, 2008: Comparison of WRF model-simulated and MODIS-derived cloud data. Mon. Wea. Rev., 136, 19571970, doi:10.1175/2007MWR2293.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., D. J. Posselt, E. R. Olson, H.-L. Huang, J. E. Davies, J. Li, and C. S. Velden, 2007: Mesoscale numerical weather prediction models used in support of infrared hyperspectral measurement simulation and product algorithm development. J. Atmos. Oceanic Technol., 24, 585601, doi:10.1175/JTECH1994.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.-L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626, doi:10.1175/2009JAMC2142.1.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M., 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud type and cloud phase (version 2.0). NOAA/NESDIS/Center for Satellite Applications and Research, College Park, MD, 96 pp. [Available online at www.goes-r.gov/products/ATBDs/baseline/Cloud_CldType_v2.0_no_color.pdf.]

  • Pierce, R. B., and Coauthors, 2007: Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2009: Impacts of background ozone production on Houston and Dallas, Texas, air quality during the Second Texas Air Quality Study field mission. J. Geophys. Res., 114, D00F09, doi:10.1029/2008JD011337.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, J. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711, doi:10.1175/2008JAMC1858.1.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Search Google Scholar
    • Export Citation
  • Shuai, Y., and Coauthors, 2013: Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics. Int. J. Remote Sens., 34, 59976016, doi:10.1080/01431161.2013.803169.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Jr., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda, and L. Nguyen, 2012: Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. J. Appl. Meteor. Climatol., 51, 17941810, doi:10.1175/JAMC-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Verma, S., and Coauthors, 2009: Ozone production in boreal fire smoke plumes using observations from the Tropospheric Emission Spectrometer and the Ozone Monitoring Instrument. J. Geophys. Res., 114, D02303, doi:10.1029/2008JD010108.

    • Search Google Scholar
    • Export Citation
  • Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, doi:10.1029/2007GL030676.

    • Search Google Scholar
    • Export Citation
  • Xie, H., and Coauthors 2013: Integration and ocean-based prelaunch validation of GOES-R Advanced Baseline Imager legacy atmospheric products. J. Atmos. Oceanic Technol., 30, 17431756, doi:10.1175/JTECH-D-12-00120.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1465 722 24
PDF Downloads 581 107 8