Superensemble Regional Climate Modeling for the Western United States

Philip W. Mote Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Philip W. Mote in
Current site
Google Scholar
PubMed
Close
,
Myles R. Allen School of Geography and the Environment, Oxford University, Oxford, United Kingdom

Search for other papers by Myles R. Allen in
Current site
Google Scholar
PubMed
Close
,
Richard G. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Richard G. Jones in
Current site
Google Scholar
PubMed
Close
,
Sihan Li Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Sihan Li in
Current site
Google Scholar
PubMed
Close
,
Roberto Mera Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Roberto Mera in
Current site
Google Scholar
PubMed
Close
,
David E. Rupp Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by David E. Rupp in
Current site
Google Scholar
PubMed
Close
,
Ahmed Salahuddin Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Ahmed Salahuddin in
Current site
Google Scholar
PubMed
Close
, and
Dean Vickers Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Dean Vickers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Computing resources donated by volunteers have generated the first superensemble of regional climate model results, in which the Hadley Centre Regional Model, version 3P (HadRM3P), and Hadley Centre Atmosphere Model, version 3P (HadAM3P), were implemented for the western United States at 25-km resolution. Over 136,000 valid and complete 1-yr runs have been generated to date: about 126,000 for 1960–2009 using observed sea surface temperatures (SSTs) and 10,000 for 2030–49 using projected SSTs from a global model simulation. Ensemble members differ in initial conditions, model physics, and (potentially, for future runs) SSTs. This unprecedented confluence of high spatial resolution and large ensemble size allows high signal-to-noise ratio and more robust estimates of uncertainty. This paper describes the experiment, compares model output with observations, shows select results for climate change simulations, and gives examples of the strength of the large ensemble size.

CURRENT AFFILIATIONS: Mera—Union of Concerned Scientists, Washington, D.C.; Salahuddin and Vickers—Unaffiliated

CORRESPONDING AUTHOR: Philip Mote, Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, CEOAS Admin Building 104, Oregon State University, Corvallis, OR 97330, E-mail: pmote@coas.oregonstate.edu

Abstract

Computing resources donated by volunteers have generated the first superensemble of regional climate model results, in which the Hadley Centre Regional Model, version 3P (HadRM3P), and Hadley Centre Atmosphere Model, version 3P (HadAM3P), were implemented for the western United States at 25-km resolution. Over 136,000 valid and complete 1-yr runs have been generated to date: about 126,000 for 1960–2009 using observed sea surface temperatures (SSTs) and 10,000 for 2030–49 using projected SSTs from a global model simulation. Ensemble members differ in initial conditions, model physics, and (potentially, for future runs) SSTs. This unprecedented confluence of high spatial resolution and large ensemble size allows high signal-to-noise ratio and more robust estimates of uncertainty. This paper describes the experiment, compares model output with observations, shows select results for climate change simulations, and gives examples of the strength of the large ensemble size.

CURRENT AFFILIATIONS: Mera—Union of Concerned Scientists, Washington, D.C.; Salahuddin and Vickers—Unaffiliated

CORRESPONDING AUTHOR: Philip Mote, Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, CEOAS Admin Building 104, Oregon State University, Corvallis, OR 97330, E-mail: pmote@coas.oregonstate.edu
Save
  • Abatzoglou, J., D. E. Rupp, and P. W. Mote, 2014: Seasonal climate variability and change in the Pacific Northwest of the United States. J. Climate, 27, 21252142, doi:10.1175/JCLI-D-13-00218.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29. [Available online at www.climatechange2013.org/images/report/WG1AR5_SPM_FINAL.pdf.]

  • Allen, M. R., 1999: Do-it-yourself climate prediction. Nature, 401, 642, doi:10.1038/44266.

  • Anderson, D. P., 2004: BOINC: A system for public-resource computing and storage. Proc. Fifth Int. Workshop on Grid Computing, Pittsburgh, PA, IEEE/ACM, 4–10, doi:10.1109/GRID.2004.14.

  • Boulanger, J. P., and Coauthors, 2010: A Europe–South America network for climate change assessment and impact studies. Climatic Change, 98, 307329, doi:10.1007/s10584-009-9734-8.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., P. Marquet, and R. Jones, 1998: Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn., 14, 173189, doi:10.1007/s003820050216.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., S. Somot, E. Sanchez-Gomez, C. M. Goodess, D. Jacob, G. Lenderink, and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: Regional climate models, driving general circulation model and interannual variability. Climate Dyn., 38, 951964, doi:10.1007/s00382-011-1053-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and Coauthors, 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19, 873895, doi:10.1175/JCLI3669.1.

    • Search Google Scholar
    • Export Citation
  • Dulière, V., Y. Zhang, and E. P. Salathé Jr., 2011: Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Climate, 24, 19501964, doi:10.1175/2010JCLI3224.1.

    • Search Google Scholar
    • Export Citation
  • Endris, H. S., and Coauthors, 2013: Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Climate, 26, 84538475, doi:10.1175/JCLI-D-12-00708.1.

    • Search Google Scholar
    • Export Citation
  • Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note, 31 pp.

  • Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip. Rev.: Climate Change, 2, 783800, doi:10.1002/wcc.148.

  • Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941963, doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., J. R. Alder, and A. M. Allan, 2012: Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users. USGS Open File Rep. 2011-1238, 64 pp. [Available online at http://pubs.usgs.gov/of/2011/1238/.]

  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., J. M. Murphy, and M. Noguer, 1995: Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121, 14131449, doi:10.1002/qj.49712152610.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., M. Noguer, D. Hassell, D. Hudson, S. Wilson, G. Jenkins, and J. Mitchell, 2003: Workbook on generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre Rep., 32 pp. [Available online at www.uncclearn.org/sites/default/files/inventory/undp17.pdf.]

  • Kalognomou, E.-A., and Coauthors, 2013: A diagnostic evaluation of precipitation in CORDEX models over southern Africa. J. Climate, 26, 94779506, doi:10.1175/JCLI-D-12-00703.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., D. P. Rowell, R. G. Jones, and E. Buonomo, 2008: Robustness of future changes in local precipitation extremes. J. Climate, 21, 42804297, doi:10.1175/2008JCLI2082.1.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., L. Hernández-Díaz, K. Tete, L. Sushama, L. Šeparović, A. Martynov, K. Winger, and M. Valin, 2013: Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Climate Dyn., 41, 32193246, doi:10.1007/s00382-012-1651-2.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, X. D. Bian, W. M. Washington, J. G. Han, and J. O. Roads, 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62, 75113, doi:10.1023/B: CLIM.0000013692.50640.55.

    • Search Google Scholar
    • Export Citation
  • Li, S., P. W. Mote, D. E. Rupp, D. Vickers, R. Mera, and M. Allen, 2015: Evaluation of a regional climate modeling effort for the western United States using a superensemble from Weather@Home. J. Climate, 28, 74707488. doi:10.1175/JCLI-D-14-00808.1.

    • Search Google Scholar
    • Export Citation
  • Massey, N., and Coauthors, 2015: Weather@Home—Development and validation of a very large ensemble modelling system for probabilistic event attribution. Quart. J. Roy. Meteor. Soc., 141, 15281545, doi:10.1002/qj.2455.

    • Search Google Scholar
    • Export Citation
  • Means, E., M. Laugier, J. Daw, L. Kaatz, and M. Waage, 2010: Decision support planning methods: Incorporating climate change uncertainties into water planning. Water Utility Climate Alliance White Paper, 102 pp. [Available online at www.wucaonline.org/assets/pdf/pubs_whitepaper_012110.pdf.]

  • Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311312, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., L. Brekke, P. B. Duffy, and E. Maurer, 2011: Guidelines for constructing climate scenarios. Eos, Trans. Amer. Geophys. Union, 92, 257258, doi:10.1029/2011EO310001.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., J. Abatzoglou, and K. Kunkel, 2013: Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities. Island Press, 224 pp.

  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, doi:10.1175/JCLI-D-11-00375.1.

    • Search Google Scholar
    • Export Citation
  • Northrop, P. J., and R. E. Chandler, 2014: Quantifying sources of uncertainty in projections of future climate. J. Climate, 27, 87938808, doi:10.1175/JCLI-D-14-00265.1.

    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., L. C. Sloan, and M. A. Snyder, 2011: Can ensembles of regional climate model simulations improve results from sensitivity studies? Climate Dyn., 37, 11111118, doi:10.1007/s00382-010-0900-5.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., S. Kapnick, and A. Hall, 2011: Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. J. Geophys. Res., 116, D16115, doi:10.1029/2010JD015479.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444, doi:10.1175/2008JCLI2405.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rowland, D. J., 2011: Quantifying uncertainty in projections of large scale climate change. Ph.D. thesis, Oxford University, 195 pp.

  • Salathé, E. P., R. Steed, C. F. Mass, and P. Zahn, 2008: A high-resolution climate model for the United States Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, doi:10.1175/2008JCLI2090.1.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., L. R. Leung, Y. Qian, and Y. Zhang, 2010: Regional climate model projections for the State of Washington. Climatic Change, 102, 5175, doi:10.1007/s10584-010-9849-y.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, doi:10.1038/nature03301.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E, R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Rep., 160 pp. [Available online at www.ecad.eu/documents/Ensembles_final_report_Nov09.pdf.]

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 25552575, doi:10.1007/s00382-013-1714-z.

    • Search Google Scholar
    • Export Citation
  • Wang, C., R. G. Jones, M. Perry, and C. Johnson, 2013: Using an ultra-high resolution regional climate model to predict local climatology. Quart. J. Roy. Meteor. Soc., 139, 19641976, doi:10.1002/qj.2081.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and C. Deser, 2014: Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation. J. Climate, 27, 527550, doi:10.1175/JCLI-D-12-00839.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., V. Dulière, P. W. Mote, and E. P. Salathé Jr., 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the United States Pacific Northwest. J. Climate, 22, 55115526, doi:10.1175/2009JCLI2875.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3253 2280 96
PDF Downloads 375 83 7