The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona’s Meteor Crater

Manuela Lehner University of Utah, Salt Lake City, Utah

Search for other papers by Manuela Lehner in
Current site
Google Scholar
PubMed
Close
,
C. David Whiteman University of Utah, Salt Lake City, Utah

Search for other papers by C. David Whiteman in
Current site
Google Scholar
PubMed
Close
,
Sebastian W. Hoch University of Utah, Salt Lake City, Utah

Search for other papers by Sebastian W. Hoch in
Current site
Google Scholar
PubMed
Close
,
Erik T. Crosman University of Utah, Salt Lake City, Utah

Search for other papers by Erik T. Crosman in
Current site
Google Scholar
PubMed
Close
,
Matthew E. Jeglum University of Utah, Salt Lake City, Utah

Search for other papers by Matthew E. Jeglum in
Current site
Google Scholar
PubMed
Close
,
Nihanth W. Cherukuru Arizona State University, Tempe, Arizona

Search for other papers by Nihanth W. Cherukuru in
Current site
Google Scholar
PubMed
Close
,
Ronald Calhoun Arizona State University, Tempe, Arizona

Search for other papers by Ronald Calhoun in
Current site
Google Scholar
PubMed
Close
,
Bianca Adler Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Bianca Adler in
Current site
Google Scholar
PubMed
Close
,
Norbert Kalthoff Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Norbert Kalthoff in
Current site
Google Scholar
PubMed
Close
,
Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
,
Thomas W. Horst National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas W. Horst in
Current site
Google Scholar
PubMed
Close
,
Steven Semmer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Steven Semmer in
Current site
Google Scholar
PubMed
Close
,
William O. J. Brown National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William O. J. Brown in
Current site
Google Scholar
PubMed
Close
,
Steven P. Oncley National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Steven P. Oncley in
Current site
Google Scholar
PubMed
Close
,
Roland Vogt University of Basel, Basel, Switzerland

Search for other papers by Roland Vogt in
Current site
Google Scholar
PubMed
Close
,
A. Martina Grudzielanek Ruhr-Universität Bochum, Bochum, Germany

Search for other papers by A. Martina Grudzielanek in
Current site
Google Scholar
PubMed
Close
,
Jan Cermak Ruhr-Universität Bochum, Bochum, Germany

Search for other papers by Jan Cermak in
Current site
Google Scholar
PubMed
Close
,
Nils J. Fonteyne Ruhr-Universität Bochum, Bochum, Germany

Search for other papers by Nils J. Fonteyne in
Current site
Google Scholar
PubMed
Close
,
Christian Bernhofer Technische Universität Dresden, Dresden, Germany

Search for other papers by Christian Bernhofer in
Current site
Google Scholar
PubMed
Close
,
Andrea Pitacco University of Padua, Padua, Italy

Search for other papers by Andrea Pitacco in
Current site
Google Scholar
PubMed
Close
, and
Petra Klein University of Oklahoma, Norman, Oklahoma

Search for other papers by Petra Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.

CORRESPONDING AUTHOR: Manuela Lehner, Department of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm 819, Salt Lake City, UT 84112-0110, E-mail: manuela.lehner@utah.edu

Abstract

The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.

CORRESPONDING AUTHOR: Manuela Lehner, Department of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm 819, Salt Lake City, UT 84112-0110, E-mail: manuela.lehner@utah.edu
Save
  • Adler, B., C. D. Whiteman, S. W. Hoch, M. Lehner, and N. Kalthoff, 2012: Warm-air intrusions in Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 51, 10101025, doi:10.1175/JAMC-D-11-0158.1.

    • Search Google Scholar
    • Export Citation
  • Bergen, W. R., and A. H. Murphy, 1978: Potential economic and social value of short-range forecasts of Boulder windstorms. Bull. Amer. Meteor. Soc., 59, 2944, doi:10.1175/1520-0477(1978)059<0029:PEASVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 1993: The atmospheric momentum budget over a major mountain range: First results of the PYREX field program. Ann. Geophys., 11, 395418.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433462, doi:10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brinkmann, W. A. R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592602, doi:10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cherukuru, N. W., R. Calhoun, M. Lehner, S. W. Hoch, and C. D. Whiteman, 2015: Instrument configuration for dual Doppler lidar co-planar scans: METCRAX II. J. Appl. Remote Sens., 9, 096090, doi:10.1117/1.JRS.9.096090.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and W. R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci., 34, 17151730, doi:10.1175/1520-0469(1977)034<1715:OTEASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 25272543, doi:10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., Amer. Meteor. Soc., No. 45, 59–81.

  • Durran, D. R., 2003: Downslope winds. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Elsevier, 644–650.

  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, doi:10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., D. Goldstein, and T. Lund, 2010: High-resolution numerical studies of stable boundary layer flows in a closed basin: Evolution of steady and oscillatory flows in an axisymmetric Arizona Meteor Crater. J. Geophys. Res., 115, D18109, doi:10.1029/2009JD013359.

    • Search Google Scholar
    • Export Citation
  • Gohm, A., G. J. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteor. Soc., 134, 2146, doi:10.1002/qj.206.

    • Search Google Scholar
    • Export Citation
  • Greeley, R., J. D. Iversen, J. B. Pollack, N. Udovich, and B. White, 1974: Wind tunnel studies of Martian aeolian processes. Proc. Roy. Soc. London, A341, 331360, doi:10.1098/rspa.1974.0191.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and D. Belušić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus, 61A, 116, doi:10.1111/j.1600-0870.2008.00369.x.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The Terrain-induced Rotor Experiment—A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 15131533, doi:10.1175/2008BAMS2487.1.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., C. D. Whiteman, S. W. Hoch, and M. Lehner, 2011: A mass flux model of nocturnal cold-air intrusions into a closed basin. J. Appl. Meteor. Climatol., 50, 933943, doi:10.1175/2010JAMC2540.1.

    • Search Google Scholar
    • Export Citation
  • Hill, M., R. Calhoun, H. J. S. Fernando, W. Wieser, D. Dörnbrack, M. Weissmann, G. Mayr, and R. Newsom, 2010: Coplanar Doppler lidar retrieval of rotors from T-REX. J. Atmos. Sci., 67, 713729, doi:10.1175/2009JAS3016.1.

    • Search Google Scholar
    • Export Citation
  • Houghton, D. D., and A. Kasahara, 1968: Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math., 21, 123, doi:10.1002/cpa.3160210103.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. L., G. Mayr, and S. Vosper, 2012: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 121–218.

  • Katurji, M., S. Zhong, M. Kiefer, and P. Zawar-Reza, 2013: Numerical simulations of turbulent flow within and in the wake of a small basin. J. Geophys. Res. Atmos., 118, 60526063, doi:10.1002/jgrd.50519.

    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and S. Zhong, 2011: An idealized modeling study of nocturnal cooling processes inside a small enclosed basin. J. Geophys. Res., 116, D20127, doi:10.1029/2011JD016119.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kring, D. A., 2007: Guidebook to the Geology of Barringer Meteorite Crater, Arizona (aka Meteor Crater). LPI Contribution 1355, Lunar and Planetary Institute, 150 pp. [Available online at www.lpi.usra.edu/publications/books/barringer_crater_guidebook/.]

  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1954: Some aspects of the flow of stratified fluids: II. Experiments with a two-fluid system. Tellus, 6, 97115, doi:10.1111/j.2153-3490.1954.tb01100.x.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1955: Some aspects of the flow of stratified fluids: III. Continuous density gradients. Tellus, 7, 341357, doi:10.1111/j.2153-3490.1955.tb01171.x.

    • Search Google Scholar
    • Export Citation
  • Magalhães, J. A., and R. E. Young, 1995: Downslope windstorms in the lee of ridges on Mars. Icarus, 113, 277294, doi:10.1006/icar.1995.1024.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and L. Armi, 2008: Föhn as a response to changing upstream and downstream air masses. Quart. J. Roy. Meteor. Soc., 134, 13571369, doi:10.1002/qj.295.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, doi:10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, F. M., M. G. Zreda, S. S. Smith, D. Elmore, P. W. Kubik, R. I. Dorn, and D. J. Roddy, 1991: Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochim. Cosmochim. Acta, 55, 26952698, doi:10.1016/0016-7037(91)90387-K.

    • Search Google Scholar
    • Export Citation
  • Rafkin, S. C. R., R. M. Haberle, and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System: Model description and selected simulations. Icarus, 151, 228256, doi:10.1006/icar.2001.6605.

    • Search Google Scholar
    • Export Citation
  • Richner, H., and P. Hächler, 2012: Understanding and forecasting Alpine foehn. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 219–260.

  • Savage, L. C., I. Crosby, S. Zhong, W. Yao, W. J. O. Brown, T. W. Horst, and C. D. Whiteman, 2008: An observational and numerical study of a regional-scale downslope flow in northern Arizona. J. Geophys. Res., 113, D14114, doi:10.1029/2007JD009623.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, doi:10.1016/S0065-2687(08)60262-9.

  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, doi:10.1016/S0065-2687(08)60052-7.

  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936, doi:10.1002/qj.103.

    • Search Google Scholar
    • Export Citation
  • Soontiens, N., M. Stastna, and M. L. Waite, 2013: Numerical simulations of waves over large crater topography in the atmosphere. J. Atmos. Sci., 70, 12161232, doi:10.1175/JAS-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., J. M. Hubbe, and W. J. Shaw, 2000: Evaluation of an inexpensive temperature datalogger for meteorological applications. J. Atmos. Oceanic Technol., 17, 7781, doi:10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006—Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 16651680, doi:10.1175/2008BAMS2574.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold-air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 18941905, doi:10.1175/2010JAMC2470.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2462 1689 75
PDF Downloads 672 169 9