Bieringer, P., S. Hanna, G. Young, B. Kosovic, J. Hannan, and R. Ohba, 2013: Methods for estimating the atmospheric radiation release from the Fukushima Dai-ichi nuclear power plant. Bull. Amer. Meteor. Soc., 94, ES1–ES4, doi:10.1175/BAMS-D-12-00090.1.
Bixler, N. E., E. Clauss, C. W. Morrow, J. A. Mitchell, C. Navarro, and J. Barr, 2013: Synthesis of distributions representing important non-site-specific parameters in off-site consequence analyses. U.S. Nuclear Regulatory Commission Rep. NUREG/CR-7161 and SAND2010–3380P, 123 pp.
Chang, R., J. Schaperow, T. Ghosh, J. Barr, C. Tinkler, and M. Stutzke, 2012: State-of-the-Art Reactor Consequence Analyses (SOARCA). U.S. Nuclear Regulatory Commission Rep. NUREG-1935, 200 pp.
Chino, M., H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa, 2011: Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129–1134, doi:10.1080/18811248.2011.9711799.
Dowdall, M., and Coauthors, 2014: Mobile measurement: Field exercise in fallout mapping in the Belarussian Exclusion Zone (MOBELRAD). Nordic Nuclear Safety Research Rep. NKS-320, 52 pp.
Draxler, R., and Coauthors, 2015: World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 172–184, doi:10.1016/j.jenvrad.2013.09.014.
Drews, M., B. Lauritzen, H. Madsen and J. Q. Smith, 2004: Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials. Radiat. Prot. Dosim., 111, 257–269.
Gauntt, R. O., and Coauthors, 2001: MELCOR computer code manuals. U.S. Nuclear Regulatory Commission Rep. NUREG/CR6119, Vol. 3, Rev.0, SAND2001–0929P, 247 pp. [Available online at http://melcor.sandia.gov/techreports/010929p.pdf.]
Hatamura, Y., 2012: Final report. 529 pp. [Available online at www.cas.go.jp/jp/seisaku/icanps/eng/final-report.html.]
Hososhima, M., and N. Kaneyasu, 2015: Altitude-dependent distribution of ambient gamma dose rates in a mountainous area of Japan caused by the Fukushima nuclear accident. Environ. Sci. Technol., 49, 3341–3348, doi:10.1021/es504838w.
Katata, G., and Coauthors, 2015: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–1070, doi:10.5194/acp-15-1029-2015.
Kobayashi, T., H. Nagai, M. Chino, and H. Kawamura, 2013: Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–264, doi:10.1080/00223131.2013.772449.
METI, 2013: Mid-and-long-term roadmap towards the decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station units 1-4 (summary). Accessed 20 December 2015. [Available online at www.meti.go.jp/english/press/2013/pdf/0627_01.pdf.]
MSJ, 2015a: Recommendation for reinforcement of monitoring and prediction technologies for the accidents of nuclear related facilities (in Japanese). Tenki, 62, 111–112.
MSJ, 2015b: Utilization of numerical atmospheric dispersion models for environmental emergency response (in Japanese). Tenki, 62, 113–123.
Nuclear Regulation Authority of Japan, 2015: Nuclear disaster management guidelines (in Japanese). Accessed 20 December 2015. [Available online at https://www.nsr.go.jp/data/000024441.pdf.]
Pullen, J., J. Chang, and S. Hanna, 2013: Air/sea transport, dispersion and fate modeling in the vicinity of the Fukushima Nuclear Power Plant: A special conference session summary. Bull. Amer. Meteor. Soc., 94, 31–39, doi:10.1175/BAMS-D-11-00158.1.
Ramsdell, J. V., Jr., C. A. Simonen, and K. W. Burk, 1994: Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Pacific Northwest National Laboratory Rep. PNWD-2224 HEDR, 243 pp.
Ramsdell, J. V., Jr., G. F. Athey, S. A. McGuire, and L. K. Brandon, 2012: RASCAL 4: Description of models and methods. U.S. Nuclear Regulatory Commission Rep. NUREG-1940, 225 pp.
Science Council of Japan, 2014: A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident. Sectional Committee on Nuclear Accident/Committee on Comprehensive Synthetic Engineering, Science Council of Japan Rep., 103 pp. [Available online at www.jpgu.org/scj/report/20140902scj_report_e.pdf.]
Stohl, A., and Coauthors, 2012: Xenon-133 and cesium-137 releases into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–2343, doi:10.5194/acp-12-2313-2012.
Terada, H., G. Katata, M. Chino, and H. Nagai, 2012: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–154, doi:10.1016/j.jenvrad.2012.05.023.
Tsuruta, H., Y. Oura, M. Ebihara, T. Ohara, and T. Nakajima, 2014: First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci. Rep., 4, 6717, doi:10.1038/srep06717.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 3182 | 2824 | 98 |
PDF Downloads | 206 | 67 | 4 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Bieringer, P., S. Hanna, G. Young, B. Kosovic, J. Hannan, and R. Ohba, 2013: Methods for estimating the atmospheric radiation release from the Fukushima Dai-ichi nuclear power plant. Bull. Amer. Meteor. Soc., 94, ES1–ES4, doi:10.1175/BAMS-D-12-00090.1.
Bixler, N. E., E. Clauss, C. W. Morrow, J. A. Mitchell, C. Navarro, and J. Barr, 2013: Synthesis of distributions representing important non-site-specific parameters in off-site consequence analyses. U.S. Nuclear Regulatory Commission Rep. NUREG/CR-7161 and SAND2010–3380P, 123 pp.
Chang, R., J. Schaperow, T. Ghosh, J. Barr, C. Tinkler, and M. Stutzke, 2012: State-of-the-Art Reactor Consequence Analyses (SOARCA). U.S. Nuclear Regulatory Commission Rep. NUREG-1935, 200 pp.
Chino, M., H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa, 2011: Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129–1134, doi:10.1080/18811248.2011.9711799.
Dowdall, M., and Coauthors, 2014: Mobile measurement: Field exercise in fallout mapping in the Belarussian Exclusion Zone (MOBELRAD). Nordic Nuclear Safety Research Rep. NKS-320, 52 pp.
Draxler, R., and Coauthors, 2015: World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 172–184, doi:10.1016/j.jenvrad.2013.09.014.
Drews, M., B. Lauritzen, H. Madsen and J. Q. Smith, 2004: Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials. Radiat. Prot. Dosim., 111, 257–269.
Gauntt, R. O., and Coauthors, 2001: MELCOR computer code manuals. U.S. Nuclear Regulatory Commission Rep. NUREG/CR6119, Vol. 3, Rev.0, SAND2001–0929P, 247 pp. [Available online at http://melcor.sandia.gov/techreports/010929p.pdf.]
Hatamura, Y., 2012: Final report. 529 pp. [Available online at www.cas.go.jp/jp/seisaku/icanps/eng/final-report.html.]
Hososhima, M., and N. Kaneyasu, 2015: Altitude-dependent distribution of ambient gamma dose rates in a mountainous area of Japan caused by the Fukushima nuclear accident. Environ. Sci. Technol., 49, 3341–3348, doi:10.1021/es504838w.
Katata, G., and Coauthors, 2015: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–1070, doi:10.5194/acp-15-1029-2015.
Kobayashi, T., H. Nagai, M. Chino, and H. Kawamura, 2013: Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–264, doi:10.1080/00223131.2013.772449.
METI, 2013: Mid-and-long-term roadmap towards the decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station units 1-4 (summary). Accessed 20 December 2015. [Available online at www.meti.go.jp/english/press/2013/pdf/0627_01.pdf.]
MSJ, 2015a: Recommendation for reinforcement of monitoring and prediction technologies for the accidents of nuclear related facilities (in Japanese). Tenki, 62, 111–112.
MSJ, 2015b: Utilization of numerical atmospheric dispersion models for environmental emergency response (in Japanese). Tenki, 62, 113–123.
Nuclear Regulation Authority of Japan, 2015: Nuclear disaster management guidelines (in Japanese). Accessed 20 December 2015. [Available online at https://www.nsr.go.jp/data/000024441.pdf.]
Pullen, J., J. Chang, and S. Hanna, 2013: Air/sea transport, dispersion and fate modeling in the vicinity of the Fukushima Nuclear Power Plant: A special conference session summary. Bull. Amer. Meteor. Soc., 94, 31–39, doi:10.1175/BAMS-D-11-00158.1.
Ramsdell, J. V., Jr., C. A. Simonen, and K. W. Burk, 1994: Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Pacific Northwest National Laboratory Rep. PNWD-2224 HEDR, 243 pp.
Ramsdell, J. V., Jr., G. F. Athey, S. A. McGuire, and L. K. Brandon, 2012: RASCAL 4: Description of models and methods. U.S. Nuclear Regulatory Commission Rep. NUREG-1940, 225 pp.
Science Council of Japan, 2014: A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident. Sectional Committee on Nuclear Accident/Committee on Comprehensive Synthetic Engineering, Science Council of Japan Rep., 103 pp. [Available online at www.jpgu.org/scj/report/20140902scj_report_e.pdf.]
Stohl, A., and Coauthors, 2012: Xenon-133 and cesium-137 releases into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–2343, doi:10.5194/acp-12-2313-2012.
Terada, H., G. Katata, M. Chino, and H. Nagai, 2012: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–154, doi:10.1016/j.jenvrad.2012.05.023.
Tsuruta, H., Y. Oura, M. Ebihara, T. Ohara, and T. Nakajima, 2014: First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci. Rep., 4, 6717, doi:10.1038/srep06717.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 3182 | 2824 | 98 |
PDF Downloads | 206 | 67 | 4 |