• Brandes, E. A., 1975: Optimizing rainfall estimates with the aid of radar. J. Appl. Meteor., 14, 13391345, doi:10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Chen, S., and et al. , 2013: Evaluation and uncertainty estimation of NOAA/NSSL next-generation National Mosaic QPE (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , N. Doesken, , P. Kennedy, , L. D. Carey, , S. A. Rutledge, , C. Gimmestad, , and T. Depue, 2005: The Community Collaborative Rain, Hail, and Snow Network: Informal education for scientists and citizens. Bull. Amer. Meteor. Soc., 86, 10691077, doi:10.1175/BAMS-86-8-1069.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., , J. A. Smith, , M. L. Baeck, , and W. F. Krajewski, 2013: An early performance evaluation of the NEXRAD dual-polarization radar rainfall estimates for urban flood applications. Wea. Forecasting, 28, 14781497, doi:10.1175/WAF-D-13-00046.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C. R., , P. Neilson, , and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C. R., , M. Halbleib, , J. I. Smith, , W. P. Gibson, , M. K. Doggett, , G. H. Taylor, , J. Curtis, , and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Diffendorfer, J. E., , R. Compton, , L. Kramer, , Z. Ancona, , and D. Norton, 2014: Onshore industrial wind turbine locations for the United States through July 2013. U.S. Geological Survey Data Series 817. [Available online at http://pubs.usgs.gov/ds/817/.]

  • Droegemeier, K. K., and et al. , 2002: Project CRAFT: A test bed for demonstrating the real time acquisition and archival of WSR-88D level II data. Preprints, 18th Int. Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, Orlando, FL, Amer. Meteor. Soc., 5.20. [Available online at https://ams.confex.com/ams/annual2002/webprogram/Paper30900.html.]

  • Elmore, K., , Z. Flamig, , V. Lakshmanan, , B. Kaney, , V. Farmer, , H. Reeves, , and L. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Essery, C. I., , and D. N. Wilcock, 1991: The variation in rainfall catch from standard UK Meteorological Office raingauges: A twelve year case study. Hydrol. Sci. J., 36, 2334, doi:10.1080/02626669109492482.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., , E. Kalina, , J. Aikins, , D. Gochis, , and R. Rasmussen, 2016a: Precipitation and cloud structures of intense rain during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 2752, doi:10.1175/JHM-D-14-0157.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., , E. Kalina, , J. Aikins, , M. Steiner, , D. Gochis, , P. Kucera, , K. Ikeda, , and J. Sun, 2016b: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 2752, doi:10.1175/JHM-D-14-0184.1.

    • Search Google Scholar
    • Export Citation
  • Fulton, R., , J. Breidenbach, , D.-J. Seo, , D. Miller, , and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and et al. , 2015: The great Colorado flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Search Google Scholar
    • Export Citation
  • Grams, H., , J. Zhang, , and K. Elmore, 2014: Automated identification of enhanced rainfall rates using the near-storm environment for radar precipitation estimates. J. Hydrometeor., 15, 12381254, doi:10.1175/JHM-D-13-042.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, , P. Ya, ., and D. R. Legates, 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215227, doi:10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelleher, K. E., and et al. , 2007: Project CRAFT: A real-time delivery system for NEXRAD level II data via the Internet. Bull. Amer. Meteor. Soc., 88, 10451057, doi:10.1175/BAMS-88-7-1045.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., , J. J. Gourley, , Y. Hong, , J. Zhang, , S. Moazamigoodarzi, , C. Langston, , and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar network. Water Resour. Res., 51, 14221442, doi:10.1002/2014WR015672.

    • Search Google Scholar
    • Export Citation
  • Koistinen, J., , and H. Pohjola, 2014: Estimation of ground-level reflectivity factor in operational weather radar networks using VPR-based correction ensembles. J. Appl. Meteor. Climatol., 53, 23942411, doi:10.1175/JAMC-D-13-0343.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , T. Smith, , G. J. Stumpf, , and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, doi:10.1175/WAF1009.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , J. Zhang, , K. Hondl, , and C. Langston, 2012: A statistical approach to mitigating persistent clutter in radar reflectivity data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 652662, doi:10.1109/JSTARS.2011.2181828.

    • Search Google Scholar
    • Export Citation
  • Larson, L. W., , and E. L. Peck, 1974: Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res., 10, 857863, doi:10.1029/WR010i004p00857.

    • Search Google Scholar
    • Export Citation
  • Lim, S., , R. Cifelli, , V. Chandrasekar, , and S. Matrosov, 2013: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed. J. Atmos. Oceanic Technol., 30, 21082120, doi:10.1175/JTECH-D-12-00123.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and K. E. Mitchell, 2005: The NCEP stage II/ IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maddox, R. A., , J. Zhang, , J. J. Gourley, , and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134, doi:10.1175/2009JTECHA1318.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. A., 1941: Calibration of a Weather Bureau tipping-bucket gage. Mon. Wea. Rev., 69, 205208, doi:10.1175/1520-0493(1941)069<0205:COAWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., , J. Zhang, , and P. Zhang, 2013a: A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart. J. Roy. Meteor. Soc., 139, 22332240, doi:10.1002/qj.2095.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., , J. Zhang, , P. Zhang, , and Q. Cao, 2013b: VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos., 118, 36273633, doi:10.1002/jgrd.50364.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , T. J. Schuur, , D. W. Burgess, , P. L. Heinselman, , S. Giangrande, , and D. S. Zrnić, 2005: The Joint Polarization Experiment polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , M. Diederich, , P. Zhang, , and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., , A. Henkel, , and S. Cong, 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72159.htm.]

  • Sevruk, B., 2005: Rainfall measurement: Gauges. Encyclopedia of Hydrological Sciences, M. G. Anderson, Ed., John Wiley & Sons Ltd., 529–536.

  • Sieck, L. C., , S. J. Burges, , and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, doi:10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) Severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00173.1, in press.

    • Search Google Scholar
    • Export Citation
  • Tang, L., , J. Zhang, , Y. Qi, , C. Langston, , and K. W. Howard, 2013: Non-standard blockage mitigation for national radar QPE products. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 354. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228659.html.]

    • Search Google Scholar
    • Export Citation
  • Tang, L., , J. Zhang, , C. Langston, , J. Krause, , K. Howard, , and V. Lakshmanan, 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29, 11061119, doi:10.1175/WAF-D-13-00072.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. D., , P. Zhang, , A. Ryzhkov, , J. Zhang, , and P.-L. Chang, 2014: Utilization of specific attenuation for tropical rainfall estimation in complex terrain. J. Hydrometeor., 15, 22502266, doi:10.1175/JHM-D-14-0003.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. T., , and V. Chandrasekar, 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676, doi:10.1175/2010JTECHA1419.1.

    • Search Google Scholar
    • Export Citation
  • Ware, E. C., 2005: Corrections to radar-estimated precipitation using observed rain gauge data. M.S. thesis, Cornell University, 96 pp. [Available online at https://ecommons.cornell.edu/bitstream/1813/2115/1/pdfthesis.pdf.]

  • Xu, X., , K. Howard, , and J. Zhang, 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, doi:10.1175/2007JHM954.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Y. Qi, , K. Howard, , C. Langston, , and B. Kaney, 2012a: Radar Quality Index (RQI)—A combined measure for beam blockage and VPR effects in a national network. Weather Radar and Hydrology, R. J. Moore, S. J. Cole, and A. J. Illingworth, Eds., IAHS Publ. 351, 388–393.

  • Zhang, J., , Y. Qi, , D. Kingsmill, , and K. Howard, 2012b: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA Hydrometeorology Testbed. J. Hydrometeor., 13, 18361854, doi:10.1175/JHM-D-11-0145.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Y. Qi, , B. Kaney, , C. Langston, , and K. Howard, 2014: A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology. J. Hydrometeor., 15, 17941809, doi:10.1175/JHM-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 935 935 108
PDF Downloads 770 770 96

Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities

View More View Less
  • 1 NOAA/OAR/NSSL, Norman, Oklahoma
  • | 2 NOAA/OAR/NSSL, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 3 NOAA/NWS/OHD, Silver Spring, Maryland
© Get Permissions
Restricted access

Abstract

Rapid advancements of computer technologies in recent years made the real-time transferring and integration of high-volume, multisource data at a centralized location a possibility. The Multi-Radar Multi-Sensor (MRMS) system recently implemented at the National Centers for Environmental Prediction demonstrates such capabilities by integrating about 180 operational weather radars from the conterminous United States and Canada into a seamless national 3D radar mosaic with very high spatial (1 km) and temporal (2 min) resolution. The radar data can be integrated with high-resolution numerical weather prediction model data, satellite data, and lightning and rain gauge observations to generate a suite of severe weather and quantitative precipitation estimation (QPE) products. This paper provides an overview of the initial operating capabilities of MRMS QPE products.

CORRESPONDING AUTHOR: Jian Zhang, NSSL, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072, E-mail: jian.zhang@noaa.gov

Abstract

Rapid advancements of computer technologies in recent years made the real-time transferring and integration of high-volume, multisource data at a centralized location a possibility. The Multi-Radar Multi-Sensor (MRMS) system recently implemented at the National Centers for Environmental Prediction demonstrates such capabilities by integrating about 180 operational weather radars from the conterminous United States and Canada into a seamless national 3D radar mosaic with very high spatial (1 km) and temporal (2 min) resolution. The radar data can be integrated with high-resolution numerical weather prediction model data, satellite data, and lightning and rain gauge observations to generate a suite of severe weather and quantitative precipitation estimation (QPE) products. This paper provides an overview of the initial operating capabilities of MRMS QPE products.

CORRESPONDING AUTHOR: Jian Zhang, NSSL, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072, E-mail: jian.zhang@noaa.gov
Save