• Ansari, S., 2014: NOAA Weather and Climate Toolkit. NOAA/National Climatic Data Center. [Available online at www.ncdc.noaa.gov/wct/.]

  • Arrowsmith, S. J., , J. B. Johnson, , D. P. Drob, , and M. A. H. Hedlin, 2010: The seismoacoustic wavefield: A new paradigm in studying geophysical phenomena. Rev. Geophys., 48, RG4003, doi:10.1029/2010RG000335.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. A., , C. S. Bouchard, , R. W. Przbylinski, , R. J. Trapp, , and G. Schmocker, 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296, doi:10.1175/MWR2973.1.

    • Search Google Scholar
    • Export Citation
  • Bedard, A. J., Jr., , and M. J. Sanders, 1978: Thunderstorm-related wind shear detected at Dulles International Airport using a Doppler acoustic/microwave radar, a monostatic sounder and arrays of surface sensors. Proc. Conf. on Weather Forecasting and Analysis and Aviation Meteorology, Silver Spring, MD, Amer. Meteor. Soc., 347352.

  • Bedard, A. J., Jr., , W. H. Hooke, , and D. W. Beran, 1977: The Dulles airport pressure jump detector array for gust front detection. Bull. Amer. Meteor. Soc., 58, 920926, doi:10.1175/1520-0477(1977)058<0920:TDAPJD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Angelis, S., , and P. Bodin, 2012: Watching the wind: Seismic data contamination at long periods due to atmospheric pressure-field-induced tilting. Bull. Seismol. Soc. Amer., 102, 12551265, doi:10.1785/0120110186.

    • Search Google Scholar
    • Export Citation
  • de Groot-Hedlin, C. D., , M. A. H. Hedlin, , K. T. Walker, , D. P. Drob, , and M. A. Zumberge, 2008: Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network. J. Acoust. Soc. Amer., 124, 14421451, doi:10.1121/1.2956475.

    • Search Google Scholar
    • Export Citation
  • de Groot-Hedlin, C. D., , M. A. H. Hedlin, , and K. T. Walker, 2013: Detection of gravity waves across the USArray: A case study. Earth Planet. Sci. Lett., 402, 346352, doi:10.1016/j.epsl.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, , G. W. Carbin, , and H. E. Brooks, 2012: The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67, 8894, doi:10.1002/wea.1902.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., , and H. R. Byers, 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129146, doi:10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., , J. P. Breidenbach, , D. Seo, , and D. A. Miller, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hedlin, M. A. H., , D. Drob, , K. Walker, , and C. D. de Groot-Hedlin, 2010: A study of acoustic propagation from a large bolide in the atmosphere with a dense seismic network. J. Geophys. Res., 115, B11312, doi:10.1029/2010JB007669.

    • Search Google Scholar
    • Export Citation
  • Hedlin, M. A. H., , C. D. de Groot-Hedlin, , and D. P. Drob, 2012a: A study of infrasound propagation using dense seismic network recordings of surface explosions. Bull. Seismol. Soc. Amer., 102, 19271937, doi:10.1785/0120110300.

    • Search Google Scholar
    • Export Citation
  • Hedlin, M. A. H., , K. Walker, , D. P. Drob, , and C. D. de Groot-Hedlin, 2012b: Infrasound: Connecting the solid Earth, oceans and atmosphere. Annu. Rev. Earth Planet. Sci., 40, 327354, doi:10.1146/annurev-earth-042711-105508.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Istok, M. J., and et al. , 2009: WSR-88D dual polarization initial operational capabilities. Preprints, 25th Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/pdfpapers/148927.pdf.]

  • Jacques, A. A., , J. D. Horel, , E. T. Crosman, , and F. L. Vernon, 2015: Central and eastern U.S. surface pressure variations derived from the USArray network. Mon. Wea. Rev., 143, 14721493, doi:10.1175/MWR-D-14-00274.1.

    • Search Google Scholar
    • Export Citation
  • Kanamori, H., , J. Mori, , D. L. Anderson, , and T. H. Heaton, 1991: Seismic excitation by the space shuttle Columbia. Nature, 349, 781782, doi:10.1038/349781a0.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., , M. J. Bunkers, , M. R. Hjelmfelt, , and J. N. Covert, 2003: Severe convective windstorms over the northern high plains of the United States. Wea. Forecasting, 18, 502519, doi:10.1175/1520-0434(2003)18<502:SCWOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klingle, D. L., , D. R. Smith, , and M. M. Wolfson, 1987: Gust front characteristics as detected by Doppler radar. Mon. Wea. Rev., 115, 905918, doi:10.1175/1520-0493(1987)115<0905:GFCADB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langston, C., 2004: Seismic ground motions from a bolide shock wave. J. Geophys. Res., 109, B12309, doi:10.1029/2004JB003167.

  • Lee, J. J., , T. M. Samaras, , and C. R. Young, 2004: Pressure measurements at the ground in an F-4 tornado. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.3. [Available online at https://ams.confex.com/ams/pdfpapers/81700.pdf.]

  • Mazari, N., , H. Xie, , J. Zeitler, , and H. O. Sharif, 2013: Validation of the NEXRAD DSP product with a dense rain gauge network. J. Hydrol. Eng., 18, 156157, doi:10.1061/(ASCE)HE.1943-5584.0000676.

    • Search Google Scholar
    • Export Citation
  • Nishiyama, R. T., , and A. J. Bedard Jr., 1991: A “Quad-Disc” static pressure probe for measurement in adverse atmospheres: With a comparative review of static pressure probe designs. Rev. Sci. Instrum., 62, 21932204, doi:10.1063/1.1142337.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , R. Conrick, , C. Miller, , J. Tytell, , and R. J. Barthelmie, 2014: Intense and extreme wind speeds observed by anemometer and seismic networks: An eastern U.S. case study. J. Appl. Meteor. Climatol., 53, 24172429, doi:10.1175/JAMC-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Sorrells, G. G., , J. A. McDonald, , Z. A. Der, , and E. Herrin, 1971: Earth motion caused by local atmospheric pressure changes. Geophys. J. Roy. Astron. Soc., 26, 8398, doi:10.1111/j.1365-246X.1971.tb03384.x.

    • Search Google Scholar
    • Export Citation
  • Sufri, O., , K. D. Koper, , R. Burlacu, , and B. de Foy, 2013: Microseisms from Superstorm Sandy. Earth Planet. Sci. Lett., 402, 324336, doi:10.016/j.epsl.2013.10.015.

    • Search Google Scholar
    • Export Citation
  • Tatom, F. B., 1993: Seismic detection of tornadoes. Earthquakes Volcanoes, 24, 222234.

  • Tatom, F. B., , and S. J. Vitton, 2001: The transfer of energy from a tornado into the ground. Seismol. Res. Lett., 72, 1221, doi:10.1785/gssrl.72.1.12.

    • Search Google Scholar
    • Export Citation
  • Tatom, F. B., , K. R. Knupp, , and S. J. Vitton, 1995: Tornado detection based on seismic signal. J. Appl. Meteor., 34, 572582, doi:10.1175/1520-0450(1995)034<0572:TDBOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tytell, J. E., , F. Vernon, , and J. Eakins, 2011: Tracking outflows from severe thunderstorms using NSF Earth Scope USArray pressure sensors. Proc. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 2A.3. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper180739.html.]

  • Vernon, F. L., , J. Eakins, , J. E. Tytell, , B. Busby, , and B. Woodward, 2011: Observations of weather phenomena by NSF Earth Scope USArray seismic and pressure sensors. Proc. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 110. [Available online at https://ams.confex.comams/91Annual/webprogram/Paper180671.html.]

    • Search Google Scholar
    • Export Citation
  • Walker, K. T., , M. A. H. Hedlin, , C. D. de Groot-Hedlin, , J. Vergoz, , A. Le Pichon, , and D. Drob, 2010: Source location of the 19 February 2008 Oregon bolide using seismic networks and infrasound arrays. J. Geophys. Res., 115, B12329, doi:10.1029/2010JB007863.

    • Search Google Scholar
    • Export Citation
  • Walker, K. T., , R. Shelby, , M. A. H. Hedlin, , C. D. de Groot-Hedlin, , and F. L. Vernon, 2011: Western U.S. Infrasonic Catalog: Illuminating infrasonic hotspots with the USArray. J. Geophys. Res., 116, B12305, doi:10.1029/2011JB008579.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 350 pp.

  • Zürn, W., , and R. Widmer, 1995: On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett., 22, 35373540, doi:10.1029/95GL03369.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 7
PDF Downloads 58 58 3

The USArray Transportable Array as a Platform for Weather Observation and Research

View More View Less
  • 1 Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Incorporated Research Institutions for Seismology, Washington, D.C.
  • | 3 Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The USArray Transportable Array (TA), a component of the National Science Foundation’s EarthScope Initiative, has proven to be a successful model for large-scale real-time monitoring networks. Approximately 400 stations are deployed simultaneously in the continental United States on a nominal Cartesian grid across an area of approximately 2,000,000 km2. Each station was originally designed to operate autonomously as a seismic observing platform capable of recording and transmitting data at 1 and 40 samples per second in real time. The expansion of onboard instrumentation to include surface atmospheric pressure sensors improved the USArray’s real-time capability in monitoring the atmosphere and weather phenomena at the same sample rates. Though not a traditional weather monitoring station, the combination of these seismic and pressure sensors at each TA station can contribute to the observation of surface weather phenomena and has facilitated broader-scale observational applications. Twenty-five TA stations have a Vaisala WXT520 weather station installed in order to create an observational array of “full meteorological” (full-met) stations. Meteorological phenomena have been recorded in high detail, including a data quality comparison between a pair of TA and National Weather Service (NWS) stations, a gust-front passage, rainfall measurements following a squall-line passage, and a near pass of a tornado by one station. Additional products have been constructed from the TA data for visualization and research purposes. The large spatial extent and station configuration of the TA network increases the probability for making high-resolution recordings of data from rare encounters with atmospheric events.

CORRESPONDING AUTHOR: Jonathan Tytell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., MC-0225, La Jolla, CA 92093-0225, E-mail: jtytell@ucsd.edu

Abstract

The USArray Transportable Array (TA), a component of the National Science Foundation’s EarthScope Initiative, has proven to be a successful model for large-scale real-time monitoring networks. Approximately 400 stations are deployed simultaneously in the continental United States on a nominal Cartesian grid across an area of approximately 2,000,000 km2. Each station was originally designed to operate autonomously as a seismic observing platform capable of recording and transmitting data at 1 and 40 samples per second in real time. The expansion of onboard instrumentation to include surface atmospheric pressure sensors improved the USArray’s real-time capability in monitoring the atmosphere and weather phenomena at the same sample rates. Though not a traditional weather monitoring station, the combination of these seismic and pressure sensors at each TA station can contribute to the observation of surface weather phenomena and has facilitated broader-scale observational applications. Twenty-five TA stations have a Vaisala WXT520 weather station installed in order to create an observational array of “full meteorological” (full-met) stations. Meteorological phenomena have been recorded in high detail, including a data quality comparison between a pair of TA and National Weather Service (NWS) stations, a gust-front passage, rainfall measurements following a squall-line passage, and a near pass of a tornado by one station. Additional products have been constructed from the TA data for visualization and research purposes. The large spatial extent and station configuration of the TA network increases the probability for making high-resolution recordings of data from rare encounters with atmospheric events.

CORRESPONDING AUTHOR: Jonathan Tytell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., MC-0225, La Jolla, CA 92093-0225, E-mail: jtytell@ucsd.edu
Save