• Amburn, S. A., , and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, doi:10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ansari, S., , C. Hutchins, , S. D. Greco, , N. S. Stroumentova, , and M. Phillips, 2009: The weather and climate toolkit. Preprints, 25th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology (IIPS), Phoenix, AZ, Amer. Meteor. Soc., 6A.4. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_146485.htm.]

  • Barnes, D. E., , M. E. Splitt, , J. R. Dwyer, , S. Lazarus, , D. M. Smith, , and H. K. Rassoul, 2015: A study of thunderstorm microphysical properties and lightning flash counts associated with terrestrial gamma-ray flashes. J. Geophys. Res. Atmos., 120, 34533464, doi:10.1002/2014JD021495.

    • Search Google Scholar
    • Export Citation
  • Blaes, J. L., , C. S. Cerniglia Jr., , and M. A. Caropolo, 1998: VIL density as an indicator of hail across eastern New York and western New England. NOAA/National Weather Service Forecast Office Eastern Region Tech. Attachment 98-8, 17 pp. [Available online at www.erh.noaa.gov/ssd/erps/ta/ta98-8.pdf.]

  • Blakeslee, R. J., and et al. , 2014: Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission description and science goals. Extended Abstract, 15th Int. Conf. on Atmospheric Electricity, Norman, OK, Earth Networks/Vaisala/ Campbell Scientific, 0140011702. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140011702.pdf.]

  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Briggs, M. S., and et al. , 2010: First results on terrestrial gamma-ray flashes from the Fermi gamma-ray burst monitor. J. Geophys. Res., 115, A07323, doi:10.1029/2009JA015242.

    • Search Google Scholar
    • Export Citation
  • Briggs, M. S., and et al. , 2013: Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods. J. Geophys. Res. Space Phys., 118, 38053830, doi:10.1002/jgra.50205.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , and S. A. Rutledge, 2000: On the relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, B. E., , N. G. Lehtinen, , and U. S. Inan, 2010: Terrestrial gamma ray flash production by active lightning leader channels. J. Geophys. Res., 115, A10324, doi:10.1029/2010JA015647.

    • Search Google Scholar
    • Export Citation
  • Celestin, S., , and V. P. Pasko, 2011: Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J. Geophys. Res., 116, A03315, doi:10.1029/2010JA016260.

    • Search Google Scholar
    • Export Citation
  • Cerniglia, C. S., , and W. R. Snyder, 2002: Development of warning criteria for severe pulse thunderstorms in the northeastern United States using the WSR-88D. NOAA/National Weather Service Forecast Office Eastern Region Tech. Attachment 2002-03, 14 pp. [Available online at www.erh.noaa.gov/er/hq/ssd/erps/ta/ta2002-03.pdf.]

  • Christian, H. J., and et al. , 2003: Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cohen, M. B., , U. S. Inan, , and G. Fishman, 2006: Terrestrial gamma ray flashes observed aboard the Compton Gamma Ray Observatory/Burst and Transient Source Experiment and ELV/VLF radio atmospherics. J. Geophys. Res., 111, D24109, doi:10.1029/2005JD006987.

    • Search Google Scholar
    • Export Citation
  • Cohen, M. B., , U. S. Inan, , R. K. Said, , and T. Gjestland, 2010: Geolocation of terrestrial gamma-ray flash source lightning. Geophys. Res. Lett., 37, L02801, doi:10.1029/2009GL041753.

    • Search Google Scholar
    • Export Citation
  • Collier, A. B., , T. Gjesteland, , and N. Østgaard, 2011: Assessing the power law distribution of TGFs. J. Geophys. Res., 116, A10320, doi:10.1029/2011JA016612.

    • Search Google Scholar
    • Export Citation
  • Connaughton, V., and et al. , 2010: Associations between Fermi Gamma-Ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J. Geophys. Res., 115, A12307, doi:10.1029/2010JA015681.

    • Search Google Scholar
    • Export Citation
  • Connaughton, V., and et al. , 2013: Radio signals from electron beams in terrestrial gamma-ray flashes. J. Geophys. Res. Space Phys., 118, 23132320, doi:10.1029/2012JA018288.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., , Y. Zhai, , W. Hu, , D. M. Smith, , L. I. Lopez, , and M. A. Stanley, 2005: Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes. Geophys. Res. Lett., 32, L08811, doi:10.1029/2005GL022778.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., , G. Lu, , M. S. Briggs, , V. Connaughton, , S. Xiong, , G. J. Fishman, , and J. R. Dwyer, 2011: The lightning-TGF relationship on microsecond timescales. Geophys. Res. Lett., 38, L14810, doi:10.1029/2011GL048099.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and et al. , 2014: The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes. Geophys. Res. Lett., 41, 85868593, doi:10.1002/2014GL062196.

    • Search Google Scholar
    • Export Citation
  • DeLobbe, L., , and I. Holleman, 2006: Uncertainties in radar echo top heights used for hail detection. Meteor. Appl., 13, 361374, doi:10.1017/S1350482706002374.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., 2003: A fundamental limit on electric fields in air. Geophys. Res. Lett., 30, 2055, doi:10.1029/2003GL017781.

  • Dwyer, J. R., 2007: Relativistic breakdown in planetary atmospheres. Phys. Plasmas, 14, 042901, doi:10.1063/1.2709652.

  • Dwyer, J. R., 2008: Source mechanisms of terrestrial gamma-ray flashes. J. Geophys. Res., 113, D10103, doi:10.1029/2007JD009248.

  • Dwyer, J. R., , and D. M. Smith, 2005: A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys. Res. Lett., 32, L22804, doi:10.1029/2005GL023848.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., , and S. A. Cummer, 2013: Radio emissions from terrestrial gamma-ray flashes. J. Geophys. Res. Space Phys., 118, 37693790, doi:10.1002/jgra.50188.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., , and M. A. Uman, 2014: The physics of lightning. Phys. Rep., 534, 147241, doi:10.1016/j.physrep.2013.09.004.

  • Dwyer, J. R., and et al. , 2004: A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys. Res. Lett., 31, L05119, doi:10.1029/2003GL018771.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., , D. M. Smith, , and S. A. Cummer, 2012: High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev., 173, 133196, doi:10.1007/s11214-012-9894-0.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., , and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, doi:10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fishman, G. J., and et al. , 1994: Discovery of intense gamma-ray flashes of atmospheric origin. Science, 264, 13131316, doi:10.1126/science.264.5163.1313.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., , and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8). [Available online at www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.]

  • Gjesteland, T., , N. Østgaard, , A. B. Collier, , B. E. Carlson, , C. Eyles, , and D. M. Smith, 2012: A new method reveals more TGFs in the RHESSI data. Geophys. Res. Lett., 39, L05102, doi:10.1029/2012GL050899.

    • Search Google Scholar
    • Export Citation
  • Gjesteland, T., , N. Østgaard, , H. Christian, , and A. Collier, 2015: Observation of a TGF from the convective core of a thundercloud. Geophysical Research Abstracts, Vol. 17, Abstract EGU2015–8750. [Available online at http://meetingorganizer.copernicus.org/EGU2015/EGU2015-8750.pdf.]

  • Goodman, S., and et al. , 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Goodman, S., and et al. , 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Grefenstette, B. W., , D. M. Smith, , J. R. Dwyer, , and G. J. Fishman, 2008: Time evolution of terrestrial gamma ray flashes. Geophys. Res. Lett., 35, L06802, doi:10.1029/2007GL032922.

    • Search Google Scholar
    • Export Citation
  • Grefenstette, B. W., , D. M. Smith, , B. J. Hazelton, , and L. I. Lopez, 2009: First RHESSI terrestrial gamma ray flash catalog. J. Geophys. Res., 114, A02314, doi:10.1029/2008JA013721.

    • Search Google Scholar
    • Export Citation
  • Gurevich, A. V., , G. M. Milikh, , and R. Roussel-Dupre, 1992: Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett., 165A, 463468, doi:10.1016/0375-9601(92)90348-P.

    • Search Google Scholar
    • Export Citation
  • Howard, K. W., , J. J. Gourley, , and R. A. Maddox, 1997: Uncertainties in WSR-88D measurements and their impacts on monitoring life cycles. Wea. Forecasting, 12, 166174, doi:10.1175/1520-0434(1997)012<0166:UIWMAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., , R. H. Holzworth, , J. B. Brundell, , and C. J. Rodger, 2012: Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci., 47, RS6005, doi:10.1029/2012RS005049.

    • Search Google Scholar
    • Export Citation
  • Inan, U. S., , S. C. Reising, , G. J. Fishman, , and J. M. Horack, 1996: On the association of terrestrial gamma-ray bursts with lightning and implications for sprites. Geophys. Res. Lett., 23, 10171020, doi:10.1029/96GL00746.

    • Search Google Scholar
    • Export Citation
  • Inan, U. S., , M. B. Cohen, , R. K. Said, , D. M. Smith, , and L. I. Lopez, 2006: Terrestrial gamma ray flashes and lightning discharges. Geophys. Res. Lett., 33, L18802, doi:10.1029/2006GL027085.

    • Search Google Scholar
    • Export Citation
  • King, M. D., , S. Platnick, , W. P. Menzel, , S. A. Ackerman, , and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, doi:10.1109/TGRS.2012.2227333.

    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D. H., , W. E. McGovern, , and R. F. Saffle, 1995: The WSR-88D severe weather potential algorithm. Wea. Forecasting, 10, 141159, doi:10.1175/1520-0434(1995)010<0141:TWSWPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., , and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311, doi:10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A., , M. Vountas, , and J. P. Burrows, 2011: Global distribution of cloud top height as retrieved from SCIAMACHY onboard ENVISAT spaceborne observations. Remote Sens., 3, 836844, doi:10.3390/rs3050836.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., 2008: Investigating lightning-to-ionosphere energy coupling based on VLF lightning propagation characterization. Ph.D. thesis, University of Washington, 126 pp.

  • Lenning, E., , and H. E. Fuelberg, 1998: An evaluation of WSR-88D severe hail algorithms along the northeastern Gulf Coast. Wea. Forecasting, 13, 10291045, doi:10.1175/1520-0434(1998)013<1029:AEOWSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and S. Heckman, 2010: The application of total lightning detection and cell tracking for severe weather prediction. TECO-2010 WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, Finland, WMO, P2(7). [Available online at www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P2_7_Heckman_USA.pdf.]

  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Lu, G., and et al. , 2010: Lightning mapping observation of a terrestrial gamma-ray flash. Geophys. Res. Lett., 37, L11806, doi:10.1029/2010GL043494.

    • Search Google Scholar
    • Export Citation
  • Marisaldi, M., and et al. , 2014: Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV. J. Geophys. Res. Space Phys., 119, 13371355, doi:10.1002/2013JA019301.

    • Search Google Scholar
    • Export Citation
  • Meegan, C. A., and et al. , 2009: The Fermi Gamma-Ray Burst Monitor. Astrophys. J., 702, 791804, doi:10.1088/0004-637X/702/1/791.

  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Neubert, T., 2009: ASIM—An instrument suite for the International Space Station. AIP Conf. Proc., 1118, 8, doi:10.1063/1.3137718.

  • Østgaard, N., , T. Gjesteland, , B. E. Carlson, , A. B. Collier, , S. A. Cummer, , G. Lu, , and H. J. Christian, 2013: Simultaneous observations of optical lightning and terrestrial gamma ray flash from space. Geophys. Res. Lett., 40, 24232426, doi:10.1002/grl.50466.

    • Search Google Scholar
    • Export Citation
  • Price, C., 2008: Lightning sensors for observing, tracking and nowcasting severe weather. Sensors, 8, 157170, doi:10.3390/s8010157.

  • Rodger, C. J., , J. B. Brundell, , R. H. Holzworth, , and E. H. Lay, 2009: Growing detection efficiency of the World Wide Lightning Location Network. AIP Conf. Proc., 1118, 15, doi:10.1063/1.3137706.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642655, doi:10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and et al. , 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, doi:10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Shao, X.-M., , T. Hamlin, , and D. M. Smith, 2010: A closer examination of terrestrial gamma-ray flash-related lightning processes. J. Geophys. Res., 115, A00E30, doi:10.1029/2009JA014835.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , L. I. Lopez, , R. P. Lin, , and C. P. Barrington-Leigh, 2005: Terrestrial gamma-ray flashes observed up to 20 MeV. Science, 307, 10851088, doi:10.1126/science.1107466.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , J. Hazelton, , W. Grefenstette, , J. R. Dwyer, , R. H. Holzworth, , and E. H. Lay, 2010: Terrestrial gamma ray flashes correlated to storm phase and tropopause height. J. Geophys. Res., 115, A00E49, doi:10.1029/2009JA014853.

    • Search Google Scholar
    • Export Citation
  • Splitt, M. E., , S. M. Lazarus, , D. Barnes, , J. R. Dwyer, , H. K. Rassoul, , D. M. Smith, , B. Hazelton, , and B. Grefenstette, 2010: Thunderstorm characteristics associated with RHESSI identified terrestrial gamma ray flashes. J. Geophys. Res., 115, A00E38, doi:10.1029/2009JA014622.

    • Search Google Scholar
    • Export Citation
  • Stanley, M. A., , X.-M. Shao, , D. M. Smith, , L. I. Lopez, , M. B. Pongratz, , J. D. Harlin, , M. Stock, , and A. Regan, 2006: A link between terrestrial gamma-ray flashes and intracloud lightning discharges. Geophys. Res. Lett., 33, L06803, doi:10.1029/2005GL025537.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1973: Electrification of growing ice crystals. J. Atmos. Sci., 30, 12201224, doi:10.1175/1520-0469(1973)030<1220:EOGIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., , S. J. Heckman, , D. J. Boccippio, , H. J. Christian, , and Z.-I. Kawasaki, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24 08924 095, doi:10.1029/2001JD900233.

    • Search Google Scholar
    • Export Citation
  • Williams, E., , V. Mushtak, , D. Rosenfeld, , S. Goodman, , and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and et al. , 2006: Lightning flashes conducive to the production and escape of gamma radiation to space. J. Geophys. Res., 111, D16209, doi:10.1029/2005JD006447.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 20
PDF Downloads 87 87 16

Characteristics of Thunderstorms That Produce Terrestrial Gamma Ray Flashes

View More View Less
  • 1 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, Alabama
  • | 3 Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama
  • | 4 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, Alabama
  • | 5 Department of Physics, University of Otago, Dunedin, New Zealand
  • | 6 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
  • | 7 Earth Networks, Germantown, Maryland
  • | 8 School of Physics, University College Dublin, Belfield, Dublin, Ireland
  • | 9 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

Ground-based lightning detection systems geolocated 877 terrestrial gamma ray flashes (TGFs) from a sample of 2,279 TGFs detected with the Fermi Gamma Ray Burst Monitor (GBM). From these accurate geolocations, 24 TGFs are found within the Next Generation Weather Radar (NEXRAD) operational range in the Gulf of Mexico, the Caribbean, and the Pacific near Guam. NEXRAD-enhanced echo-top (EET) data show that these 24 TGFs are consistently adjacent to high-altitude regions of the storms. The high EET values suggest that there is likely a detection–selection effect, in which the gamma rays from lower-altitude TGFs are attenuated by the atmosphere so that such TGFs fall below the detection threshold of current space-based detectors. The vertical integrated liquid density (VILD) values and the volume scan reflectivities Z show that these 24 TGFs originate from storms of a wide range of convective strengths. Convective available potential energy (CAPE) values from reanalysis also vary widely, providing additional evidence of the range of convection in these TGF-producing storms.

CORRESPONDING AUTHOR: Themistoklis Chronis, ESSC, University of Alabama in Huntsville, 301 Sparkman Dr. NW, Huntsville, AL 35899, E-mail: themis.chronis@nsstc.uah.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00239.2)

Abstract

Ground-based lightning detection systems geolocated 877 terrestrial gamma ray flashes (TGFs) from a sample of 2,279 TGFs detected with the Fermi Gamma Ray Burst Monitor (GBM). From these accurate geolocations, 24 TGFs are found within the Next Generation Weather Radar (NEXRAD) operational range in the Gulf of Mexico, the Caribbean, and the Pacific near Guam. NEXRAD-enhanced echo-top (EET) data show that these 24 TGFs are consistently adjacent to high-altitude regions of the storms. The high EET values suggest that there is likely a detection–selection effect, in which the gamma rays from lower-altitude TGFs are attenuated by the atmosphere so that such TGFs fall below the detection threshold of current space-based detectors. The vertical integrated liquid density (VILD) values and the volume scan reflectivities Z show that these 24 TGFs originate from storms of a wide range of convective strengths. Convective available potential energy (CAPE) values from reanalysis also vary widely, providing additional evidence of the range of convection in these TGF-producing storms.

CORRESPONDING AUTHOR: Themistoklis Chronis, ESSC, University of Alabama in Huntsville, 301 Sparkman Dr. NW, Huntsville, AL 35899, E-mail: themis.chronis@nsstc.uah.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00239.2)

Supplementary Materials

    • Supplemental Materials (PDF 6.81 MB)
Save