• Al Bitar, A., D. Leroux, Y. H. Kerr, O. Merlin, P. Richaume, A. Sahoo, and E. F. Wood, 2012: Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens., 50, 15721586, doi:10.1109/TGRS.2012.2186581.

    • Search Google Scholar
    • Export Citation
  • Anderson, W. B., B. F. Zaitchik, C. R. Hain, M. C. Anderson, M. T. Yilmaz, J. Mecikalski, and L. Schultz, 2012: Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci., 16, 28932913, doi:10.5194/hess-16-2893-2012.

    • Search Google Scholar
    • Export Citation
  • Bolten, J. D., W. T. Crow, Z. Xiwu, T. J. Jackson, and C. A. Reynolds, 2010: Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 5766, doi:10.1109/JSTARS.2009.2037163.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, P. Briggs, and M. Raupach, 2009: Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys. Res. Lett., 36, L21709, doi:10.1029/2009GL040334.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., A. Robock, J. B. Basara, and B. G. Illston, 2012: Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. J. Geophys. Res., 117, D09113, doi:10.1029/2011JD017095.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., F. J. Zeng, A. Ducharne, J. C. Morrill, and R. D. Koster, 2000: The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeor., 1, 121134, doi:10.1175/1525-7541(2000)001<0121:TSOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, and D. Fernández-Prieto, 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405, doi:10.1029/2012GL052988.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. van den Dool, and W. Wu, 2011: Verification and intercomparison of multimodel simulated land surface hydrological datasets over the United States. J. Hydrometeor., 12, 531555, doi:10.1175/2011JHM1317.1.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., C. R. Morgan, A. G. McCombs, P. K. Hall Jr., and R. A. McPherson, 2010: Quality assurance procedures for mesoscale meteorological data. J. Atmos. Oceanic Technol., 27, 15651582, doi:10.1175/2010JTECHA1433.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, doi:10.1029/96WR03756.

    • Search Google Scholar
    • Export Citation
  • Findell, K., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nature, 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2013: Influence of MODIS-derived dynamic vegetation on VIC-simulated soil moisture in Oklahoma. J. Hydrometeor., 14, 19101921, doi:10.1175/JHM-D-13-037.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014a: In-situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophys. Res. Lett., 41, 47274734, doi:10.1002/2014GL060949.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014b: Comparison and application of multiple methods for the interpolation of soil moisture observations. Int. J. Climatol., 34, 26042621, doi:10.1002/joc.3862.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., E. K. Harris, and S. M. Quiring, 2014a: Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci., 18, 139154, doi:10.5194/hess-18-139-2014.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., C. O. Wulff, and S. M. Quiring, 2014b: Assessment of observed and model-derived soil moisture-evaporative fraction relationships over the United States Southern Great Plains. J. Geophys. Res. Atmos., 119, 62796291, doi:10.1002/2014JD021490.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015a: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, doi:10.1175/JHM-D-14-0005.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015b: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, doi:10.5194/hess-19-3617-2015.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., and D. Bae, 1994: Climatic variability of soil water in the American Midwest: Part 2. Spatio-temporal analysis. J. Hydrol., 162, 379390, doi:10.1016/0022-1694(94)90237-2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, doi:10.1175/JHM-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., S. V. Kumar, C. D. Peters-Lidard, and J. A. Santanello, 2012: Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques. Water Resour. Res., 48, W11514, doi:10.1029/2012WR012337.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature, 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833, doi:10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K., S. Goddard, W. Sorensen, N. Wells, and T. Osugi, 2005: Performance of quality assurance procedures for an applied climate information system. J. Atmos. Oceanic Technol., 22, 105112, doi:10.1175/JTECH-1657.1.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, and K. C. Crawford, 2004: Seasonal to interannual variations in soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, doi:10.1002/joc.1077.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, C. A. Fiebrich, K. C. Crawford, E. Hunt, D. K. Fisher, R. Elliott, and K. Humes, 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175, doi:10.1016/j.jmarsys.2005.11.019.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Coauthors, 2012: Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens., 50, 15301543, doi:10.1109/TGRS.2011.2168533.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., G.-Y. Niu, and Z.-L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Journée, M., and C. Bertrand, 2011: Quality control of solar radiation data within the RMIB solar measurements network. Sol. Energy, 85, 7286, doi:10.1016/j.solener.2010.10.021.

    • Search Google Scholar
    • Export Citation
  • Khong, A., J. K. Wang, S. M. Quiring, and T. W. Ford, 2015: Soil moisture variability in Iowa. Int. J. Climatol., 35, 28372848, doi:10.1002/joc.4176.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A. Santanello, 2012: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., R. Mahmood, D. F. Levia Jr., T. DeLiberty, S. M. Quiring, C. Houser, and F. E. Nelson, 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr., 35, 6586, doi:10.1177/0309133310386514.

    • Search Google Scholar
    • Export Citation
  • Leib, B. G., J. D. Jabro, and G. R. Matthews, 2003: Field evaluation and performance comparison of soil moisture sensors. Soil Sci., 168, 396408, doi:10.1097/01.ss.0000075285.87447.86.

    • Search Google Scholar
    • Export Citation
  • Markewitz, D., S. Devine, E. A. Davidson, P. Brando, and D. C. Nepstad, 2010: Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake. New Phytol., 187, 592607, doi:10.1111/j.1469-8137.2010.03391.x.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and S. M. Quiring, 2010: Examining the influence of spring soil moisture anomalies on summer precipitation in the U.S. Great Plains using the Community Atmosphere Model version 3 (CAM3). J. Geophys. Res., 115, D21118, doi:10.1029/2010JD014449.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., P. Le Borgne, A. Marsouin, and H. Roquet, 2008: Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ., 112, 24692484, doi:10.1016/j.rse.2007.11.011.

    • Search Google Scholar
    • Export Citation
  • Mozny, M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop, and M. Virag, 2012: Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol., 107, 99111, doi:10.1007/s00704-011-0460-6.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, doi:10.1175/2010JCLI2946.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, doi:10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133, 6988, doi:10.1016/j.agrformet.2005.07.012.

    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and D. J. Erickson III, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 13621380, doi:10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp., doi:10.5065/D6N877R0.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, doi:10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteor., 118, 4962, doi:10.1016/S0168-1923(03)00072-8.

    • Search Google Scholar
    • Export Citation
  • Reybold, W. U., and G. W. TeSelle, 1989: Soil geographic data bases. J. Soil Water Conserv., 44, 2829.

  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rowlandson, T. L., B. K. Hornbuckle, L. M. Bramer, J. C. Patton, and S. D. Logsdon, 2012: Comparisons of evening and morning SMOS passes over the Midwest United States. IEEE Trans. Geosci. Remote Sens., 50, 15441555, doi:10.1109/TGRS.2011.2178158.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109, D01S90, doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, doi:10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. S. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, doi:10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, C., and T. C. Piechota, 2009: Spatial and temporal soil moisture and drought variability in the Upper Colorado River Basin. J. Hydrol., 379, 122135, doi:10.1016/j.jhydrol.2009.09.052.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., E. R. Vivoni, F. Muñoz-Arriola, and D. P. Lettenmaier, 2012: Predictability of evapotranspiration patterns using remotely sensed vegetation dynamics during the North American Monsoon. J. Hydrometeor., 13, 103121, doi:10.1175/JHM-D-11-032.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Tei, S., A. Sugimoto, H. Yonenobu, T. Yamazaki, and T. C. Maximov, 2013: Reconstruction of soil moisture for the past 100 years in eastern Siberia by using d13C of larch tree rings. J. Geophys. Res. Biogeosci., 118, 12561265, doi:10.1002/jgrg.20110.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
  • Wang, A., D. P. Lettenmaier, and J. Sheffield, 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573271, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, doi:10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, W., M. A. Geller, and R. E. Dickinson, 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3, 604613, doi:10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. Wu, T. W. Ford, and S. M. Quiring, 2015a: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 19621980, doi:10.1175/JHM-D-14-0096.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, T. W. Ford, and S. M. Quiring, 2015b: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part II: Impact of soil texture and vegetation type mismatch. J. Hydrometeor., 16, 19812000, doi:10.1175/JHM-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., T. W. Ford, Y. Wu, S. M. Quiring, and M. B. Ek, 2015c: Automated quality control of in situ soil moisture from the North American Soil Moisture Database using NLDAS-2 products. J. Appl. Meteor. Climatol., 54, 12671282, doi:10.1175/JAMC-D-14-0275.1.

    • Search Google Scholar
    • Export Citation
  • You, J., K. G. Hubbard, R. Mahmood, V. Sridhar, and D. Todey, 2010: Quality control of soil water data in Applied Climate Information System—Case study in Nebraska. J. Hydrol. Eng., 15, 200209, doi:10.1061/(ASCE)HE.1943-5584.0000174.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, N. W. Chaney, J. Sheffield, J. Kam, M. Liang, and K. Guan, 2013: Probabilistic seasonal forecasting of African drought by dynamical models. J. Hydrometeor., 14, 17061720, doi:10.1175/JHM-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, doi:10.1175/2009JCLI2568.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and M. Wegehenkel, 2006: Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sens. Environ., 104, 393408, doi:10.1016/j.rse.2006.05.011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1401 586 37
PDF Downloads 836 442 23

The North American Soil Moisture Database: Development and Applications

Steven M. QuiringDepartment of Geography, Texas A&M University, College Station, Texas

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
,
Trent W. FordDepartment of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by Trent W. Ford in
Current site
Google Scholar
PubMed
Close
,
Jessica K. WangDepartment of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Jessica K. Wang in
Current site
Google Scholar
PubMed
Close
,
Angela KhongDepartment of Geography, Texas A&M University, College Station, Texas

Search for other papers by Angela Khong in
Current site
Google Scholar
PubMed
Close
,
Elizabeth HarrisDepartment of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

Search for other papers by Elizabeth Harris in
Current site
Google Scholar
PubMed
Close
,
Terra LindgrenDepartment of Geography, Texas A&M University, College Station, Texas

Search for other papers by Terra Lindgren in
Current site
Google Scholar
PubMed
Close
,
Daniel W. GoldbergDepartment of Geography, Texas A&M University, College Station, Texas

Search for other papers by Daniel W. Goldberg in
Current site
Google Scholar
PubMed
Close
, and
Zhongxia LiDepartment of Geography, Texas A&M University, College Station, Texas

Search for other papers by Zhongxia Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Soil moisture is an important variable in the climate system that integrates the combined influence of the atmosphere, land surface, and soil. Soil moisture is frequently used for drought monitoring and climate forecasting. However, in situ soil moisture observations are not systematically archived and there are relatively few national soil moisture networks. The lack of observed soil moisture data makes it difficult to characterize long-term soil moisture variability and trends. The North American Soil Moisture Database (NASMD) is a new high-quality observational soil moisture database. It includes over 1,800 monitoring stations in the United States, Canada, and Mexico, making it the largest collections of in situ soil moisture observations in North America. Data are collected from multiple sources, quality controlled, and integrated into an online database (soilmoisture.tamu.edu). Here we describe the development of the database, including quality control/quality assurance, standardization, and collection of metadata. The utility of the NASMD is demonstrated through an analysis of the inter- and intraannual variability of soil moisture from multiple networks. The NASMD is a useful tool for drought monitoring and forecasting, calibrating/validating satellites and land surface models, and documenting how soil moisture influences the climate system on seasonal to interannual time scales.

CORRESPONDING AUTHOR: Steven Quiring, Department of Geography, Texas A&M University, College Station, TX 77843-3147, E-mail: stevenquiring@gmail.com

Abstract

Soil moisture is an important variable in the climate system that integrates the combined influence of the atmosphere, land surface, and soil. Soil moisture is frequently used for drought monitoring and climate forecasting. However, in situ soil moisture observations are not systematically archived and there are relatively few national soil moisture networks. The lack of observed soil moisture data makes it difficult to characterize long-term soil moisture variability and trends. The North American Soil Moisture Database (NASMD) is a new high-quality observational soil moisture database. It includes over 1,800 monitoring stations in the United States, Canada, and Mexico, making it the largest collections of in situ soil moisture observations in North America. Data are collected from multiple sources, quality controlled, and integrated into an online database (soilmoisture.tamu.edu). Here we describe the development of the database, including quality control/quality assurance, standardization, and collection of metadata. The utility of the NASMD is demonstrated through an analysis of the inter- and intraannual variability of soil moisture from multiple networks. The NASMD is a useful tool for drought monitoring and forecasting, calibrating/validating satellites and land surface models, and documenting how soil moisture influences the climate system on seasonal to interannual time scales.

CORRESPONDING AUTHOR: Steven Quiring, Department of Geography, Texas A&M University, College Station, TX 77843-3147, E-mail: stevenquiring@gmail.com
Save