• Andersson, E., and Y. Sato, Eds., 2012: WIGOS: WMO Integrated Global Observing System; Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, WMO Tech. Rep. 2012-1, 25 pp. [Available online at www.wmo.int/pages/prog/www/OSY/Reports/NWP-5_Sedona2012.html.]

  • Böttger, H., P. Menzel, and J. Pailleux, Eds., 2004: Proceedings of the Third WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO/TD-1228, 324 pp. [Available online at www.wmo.int/pages/prog/www/documents.html.]

  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, doi:10.1002/qj.366.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Weng, Y. Han, and Q. Liu, 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, doi:10.1029/2007JD009561.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, P. Van Delst, and F. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, doi:10.1029/2009JD013379.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, doi:10.1175/2009WAF2222302.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and J. C. Derber, 2008: Operational implementation of COSMIC observations into the NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711, doi:10.1175/2008WAF2007070.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., and R. A. Anthes, 2015: Impact of loss of microwave and radio occultation observations in operational numerical weather prediction in support of the U.S. data gap mitigation activities. Wea. Forecasting, 30, 255269, doi:10.1175/WAF-D-14-00077.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, doi:10.1029/2012JD017782.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2011: The case for EPS/MetOP Second Generation: Cost benefit analysis. 38 pp. [Available online at www.wmo.int/pages/prog/sat/meetings/documents/PSTG-3_Doc_11-04_MetOP-SG.pdf.]

  • Eyre, J. R., and W. P. Menzel, 1989: Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteor., 28, 267275, doi:10.1175/1520-0450(1989)028<0267:ROCPFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, K., 2013: Forecast impact assessments of SNPP ATMS. JCSCA Quarterly, No. 43, Joint Center for Satellite Data Assimilation, College Park, MD, 3–4.

  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, doi:10.1111/j.1600-0870.2008.00388.x.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., H. Kilcoyne, H. Cikanek, and A. Mehta, 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos., 118, 13 46313 475, doi:10.1002/2013JD020389.

    • Search Google Scholar
    • Export Citation
  • Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 29432953, doi:10.1029/2000JD900616.

    • Search Google Scholar
    • Export Citation
  • Hammersley, J. M., and D. C. Handscomb, 1975: Monte Carlo Methods. Methuen and Co., 178 pp.

  • Han, Y., and Coauthors, 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos., 118, 12 73412 748, doi:10.1002/2013JD020344.

    • Search Google Scholar
    • Export Citation
  • Hogg, R. V., and A. T. Craig, 1978: Introduction to Mathematical Statistics. 4th ed. Macmillan, 225 pp.

  • Joo, S., J. Eyre, and R. Marriott, 2012: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Met Office Forecasting Research Tech. Rep. 562, 20 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kelly, G., A. P. McNally, J.-N. Thepaut, and M. Szyndel, 2004: OSEs of all main data types in the ECMWF operation system. Proceedings of the Third WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, WMO/TD-1228, 63–94. [Available online at www.wmo.int/pages/prog/www/documents.html.]

  • Kim, E., C.-H. J. Lyu, K. Anderson, R. V. Leslie, and W. J. Blackwell, 2014: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos., 119, 56535670, doi:10.1002/2013JD020483.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 13271335, doi:10.1002/qj.280.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and R. Marriott, 2014: Forecast sensitivity to observations in the Met Office global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140, 209224, doi:10.1002/qj.2122.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., 2012: Observing system experiments to assess the impact of possible future degradation of the Global Satellite Observing Network. ECMWF Tech. Memo. 672, 20 pp. [Available online at www.ecmwf.int/sites/default/files/elibrary/2012/11085-observing-system-experiments-assess-impact-possible-future-degradation-global-satellite.pdf.]

  • McNally, A. P., J. C. Derber, W.-S. Wu, and B. B. Katz, 2000: The use of TOVS level-1B radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689724, doi:10.1002/qj.49712656315.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., M. Bonavita, and J. Thepaut, 2014: The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev., 142, 634646, doi:10.1175/MWR-D-13-00170.1.

    • Search Google Scholar
    • Export Citation
  • Ota, Y., J. C. Derber, E. Kalnay, and T. Miyoshi, 2013: Ensemble-based observation impact estimates using the NCEP GFS. Tellus, 65A, 20038, doi:10.3402/tellusa.v65i0.20038.

    • Search Google Scholar
    • Export Citation
  • Pailleux, J., E. Andersson, and M. Ondráš, Eds., 2008: Proceedings of the Fourth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO/TD-1450, 214 pp. [Available online at www.wmo.int/pages/prog/www/documents.html.]

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement of skill of weather numerical prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, doi:10.1256/003590002321042135.

    • Search Google Scholar
    • Export Citation
  • Tan, J., Z. Xie, and L. Ji, 2003: A new way to predict forecast skill. Adv. Atmos. Sci., 20, 837841, doi:10.1007/BF02915409.

  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • WMO, 2010: Global aspects. Vol. 1, Manual on the Global Data-Processing and Forecasting System, WMO-485, 196 pp. [Available online at www.wmo.int/pages/prog/www/DPFS/Manual/GDPFS-Manual.html.]

  • Wobus, R. L., and E. Kalnay, 1995: Three years of operational prediction of forecast skill at NMC. Mon. Wea. Rev., 123, 21322148, doi:10.1175/1520-0493(1995)123<2132:TYOOPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., J. Jung, J. LeMarshall, and R. Treadon, 2008: A two-season impact study of four satellite data types and rawinsonde data in the NCEP Global Data Assimilation System. Wea. Forecasting, 23, 80100, doi:10.1175/2007WAF2007010.1.

    • Search Google Scholar
    • Export Citation
  • Zavyalov, V., and Coauthors, 2013: Noise performance of the CrIS instrument. J. Geophys. Res. Atmos., 118, 13 10813 120, doi:10.1002/2013JD020457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 131 8
PDF Downloads 173 46 1

Analysis of an Observing System Experiment for the Joint Polar Satellite System

Stephen LordNOAA/National Weather Service, Silver Spring, and ESSIC, University of Maryland, College Park, College Park, Maryland

Search for other papers by Stephen Lord in
Current site
Google Scholar
PubMed
Close
,
George GaynoI.M. Systems Group, and NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by George Gayno in
Current site
Google Scholar
PubMed
Close
, and
Fanglin YangI.M. Systems Group, and NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Fanglin Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Joint Polar Satellite System (JPSS) is a key contributor to the next-generation operational polar-orbiting satellite observing system. In the JPSS era, the complete polar-orbiting observing system will be composed of two satellites—in the midmorning (mid-AM) and afternoon (PM) orbits—each with thermodynamic sounding capabilities from both microwave and hyperspectral infrared instruments. JPSS will occupy the PM orbit, while the Meteorological Operational (MetOp) system, sponsored by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), will occupy the mid-AM orbit.

While the current polar-orbiting satellite system has been thoroughly evaluated, information about its resilience and efficacy in the JPSS era is needed. A 7-month (August 2012–February 2013) observing system experiment (OSE) was run with the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). Observations were selected from operational satellite data platforms to be representative of the polar-orbiting data in the JPSS era.

Overall, removing data from the PM orbit produced inferior scores, with the impact greater in the Southern Hemisphere (SH) than in either the Northern Hemisphere (NH) or the tropics.

For the entire 7 months, the time-mean 500-hPa geopotential height anomaly correlation (Z500AC) decreased by 0.005 and 0.013 in the NH and SH, respectively—both of which are statistically significant at the 95% level. Additionally, a detailed statistical analysis of the distribution of Z500AC skill scores is presented and compared with historical accuracy data. It was determined that eliminating PM orbit data resulted in a higher probability of producing low scores and a lower probability of producing high scores, counter to the trend in GFS forecast skill over the last 20 years.

Publisher’s Note: This article was revised on 17 October 2016 to insert footnote 3.

CORRESPONDING AUTHOR: Stephen J. Lord, NOAA/NWS/Office of Science and Technology Integration, 1325 East–West Highway, Silver Spring, MD 20910, E-mail: sjlord12345@gmail.com

Abstract

The Joint Polar Satellite System (JPSS) is a key contributor to the next-generation operational polar-orbiting satellite observing system. In the JPSS era, the complete polar-orbiting observing system will be composed of two satellites—in the midmorning (mid-AM) and afternoon (PM) orbits—each with thermodynamic sounding capabilities from both microwave and hyperspectral infrared instruments. JPSS will occupy the PM orbit, while the Meteorological Operational (MetOp) system, sponsored by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), will occupy the mid-AM orbit.

While the current polar-orbiting satellite system has been thoroughly evaluated, information about its resilience and efficacy in the JPSS era is needed. A 7-month (August 2012–February 2013) observing system experiment (OSE) was run with the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). Observations were selected from operational satellite data platforms to be representative of the polar-orbiting data in the JPSS era.

Overall, removing data from the PM orbit produced inferior scores, with the impact greater in the Southern Hemisphere (SH) than in either the Northern Hemisphere (NH) or the tropics.

For the entire 7 months, the time-mean 500-hPa geopotential height anomaly correlation (Z500AC) decreased by 0.005 and 0.013 in the NH and SH, respectively—both of which are statistically significant at the 95% level. Additionally, a detailed statistical analysis of the distribution of Z500AC skill scores is presented and compared with historical accuracy data. It was determined that eliminating PM orbit data resulted in a higher probability of producing low scores and a lower probability of producing high scores, counter to the trend in GFS forecast skill over the last 20 years.

Publisher’s Note: This article was revised on 17 October 2016 to insert footnote 3.

CORRESPONDING AUTHOR: Stephen J. Lord, NOAA/NWS/Office of Science and Technology Integration, 1325 East–West Highway, Silver Spring, MD 20910, E-mail: sjlord12345@gmail.com
Save