• Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, doi:10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, doi:10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2003: Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett., 30, 1119, doi:10.1029/2002GL015926.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and R.-C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 18801901, doi:10.1175/JAS3922.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110, D14104, doi:10.1029/2004JD005431.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2009: Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys. Res. Lett., 36, L18703, doi:10.1029/2009GL039334.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., C. Orbe, and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L18703, doi:10.1029/2009GL040913.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2011: Improved predictability of the troposphere using stratospheric final warmings. J. Geophys. Res., 116, D18113, doi:10.1029/2011JD015914.

    • Search Google Scholar
    • Export Citation
  • Hartley, D. E., J. T. Villarin, R. X. Black, and C. A. Davis, 1998: A new perspective on the dynamical link between the stratosphere and troposphere. Nature, 391, 471474, doi:10.1038/35112.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, doi:10.1146/annurev.fluid.37.061903.175710.

  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697, doi:10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43316, doi:10.1016/S0065-2687(08)60053-9.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., I. N. James, and M. Blacburn, 1994: The influence of Antarctica on the momentum budget of the southern extratropics. Quart. J. Roy. Meteor. Soc., 120, 10171044, doi:10.1002/qj.49712051811.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., 2015: Improvements in statistical forecasts of monthly and two-monthly surface air temperatures using a stratospheric predictor. Quart. J. Roy. Meteor. Soc., 141, 24442456, doi:10.1002/qj.2535.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, doi:10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 12631266, doi:10.1029/GL017i009p01263.

    • Search Google Scholar
    • Export Citation
  • Koh, T. Y., and R. A. Plumb, 2004: Isentropic zonal average formalism and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130, 16311653, doi:10.1256/qj.02.219.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, doi:10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., 2008: Role of the stratosphere on the predictability of medium-range weather forecast: A case study of winter 2003–2004. Geophys. Res. Lett., 35, L19701, doi:10.1029/2008GL034902.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., 2010: High initial-time sensitivity of medium-range forecasting observed for a stratospheric sudden warming. Geophys. Res. Lett., 37, L16804, doi:10.1029/2010GL044119.

    • Search Google Scholar
    • Export Citation
  • Li, J.-P., and R.-Q. Ding, 2011: Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 32653283, doi:10.1175/MWR-D-10-05020.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., A. A. Scaife, and S. Ineson, 2009: Enhanced seasonal prediction of European winter warming following volcanic eruptions. J. Climate, 22, 61686180, doi:10.1175/2009JCLI3145.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., T. Shaw, and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783, doi:10.1175/2011JAS3711.1.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, doi:10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ren, R.-C., and M. Cai, 2007: Meridional and vertical out-of-phase relationships of temperature anomalies associated with the northern annular mode variability. Geophys. Res. Lett., 34, L07704, doi:10.1029/2006GL028729.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62, 18841900, doi:10.1175/JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2002: Issues in stratosphere-troposphere coupling. J. Meteor. Soc. Japan, 80, 769792, doi:10.2151/jmsj.80.769.

  • Siegmund, P., 2005: Stratospheric polar cap mean height and temperature as extended-range weather predictors. Mon. Wea. Rev., 133, 24362448, doi:10.1175/MWR2985.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., A. A. Scaife, and B. P. Kirtman, 2012: What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett., 7, 015602, doi:10.1088/1748-9326/7/1/015602.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res., 114, D12103, doi:10.1029/2008JD011277.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2014: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, doi:10.1002/qj.2432.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., K. Ishioka, D. Durran, T. Enomoto, Y.-Y. Hayashi, T. Miyoshi, and M. Yamada, 2014: Theoretical aspects of variability and predictability in weather and climate systems. Bull. Amer. Meteor. Soc., 95, 11011104, doi:10.1175/BAMS-D-14-00009.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, J.-G. Hu, and G.-X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in winter season. J. Atmos. Sci., 71, 35393553, doi:10.1175/JAS-D-13-0365.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., M. Cai, R.-C. Ren, and H. van den Dool, 2015a: Relationship of warm air mass transport into upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci., 72, 349368, doi:10.1175/JAS-D-14-0111.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, and M. Cai, 2015b: Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter. Geophys. Res. Lett., 42, 24422448, doi:10.1002/2015GL063676.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, and M. Cai, 2015c: Dynamical linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 32143232, doi:10.1175/JAS-D-14-0390.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C.-S. Shin, H. van den Dool, and M. Cai, 2013: CFSv2 prediction skill of stratospheric temperature anomalies. Climate Dyn., 41, 22312249, doi:10.1007/s00382-013-1907-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 186 15
PDF Downloads 329 150 10

Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold-Air Outbreaks 1 Month in Advance

Ming CaiDepartment of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Ming Cai in
Current site
Google Scholar
PubMed
Close
,
Yueyue YuDepartment of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yueyue Yu in
Current site
Google Scholar
PubMed
Close
,
Yi DengSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
,
Huug M. van den DoolNOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Huug M. van den Dool in
Current site
Google Scholar
PubMed
Close
,
Rongcai RenLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Rongcai Ren in
Current site
Google Scholar
PubMed
Close
,
Suru SahaNOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Suru Saha in
Current site
Google Scholar
PubMed
Close
,
Xingren WuNOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Xingren Wu in
Current site
Google Scholar
PubMed
Close
, and
Jin HuangNOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Jin Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme weather events such as cold-air outbreaks (CAOs) pose great threats to human life and the socioeconomic well-being of modern society. In the past, our capability to predict their occurrences has been constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as the pulse of the stratosphere (PULSE), can often be predicted with a useful degree of skill 4–6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in midlatitudes increases substantially above normal conditions within a short time period from 1 week before to 1–2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America during the 2013/14 winter. A real-time forecast experiment inaugurated in the winter of 2014/15 has given support to the idea that it is feasible to forecast CAOs 1 month in advance.

CORRESPONDING AUTHOR: Ming Cai, Dept. of Earth, Ocean and Atmospheric Science, Florida State University, 1017 Academic Way, Tallahassee, FL 32306, E-mail: mcai@fsu.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00287.2)

Abstract

Extreme weather events such as cold-air outbreaks (CAOs) pose great threats to human life and the socioeconomic well-being of modern society. In the past, our capability to predict their occurrences has been constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as the pulse of the stratosphere (PULSE), can often be predicted with a useful degree of skill 4–6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in midlatitudes increases substantially above normal conditions within a short time period from 1 week before to 1–2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America during the 2013/14 winter. A real-time forecast experiment inaugurated in the winter of 2014/15 has given support to the idea that it is feasible to forecast CAOs 1 month in advance.

CORRESPONDING AUTHOR: Ming Cai, Dept. of Earth, Ocean and Atmospheric Science, Florida State University, 1017 Academic Way, Tallahassee, FL 32306, E-mail: mcai@fsu.edu

A supplement to this article is available online (10.1175/BAMS-D-14-00287.2)

Supplementary Materials

    • Supplemental Materials (PDF 4.17 MB)
Save