The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific

Eric J. Jensen NASA Ames Research Center, Moffett Field, California

Search for other papers by Eric J. Jensen in
Current site
Google Scholar
PubMed
Close
,
Leonhard Pfister NASA Ames Research Center, Moffett Field, California

Search for other papers by Leonhard Pfister in
Current site
Google Scholar
PubMed
Close
,
David E. Jordan NASA Ames Research Center, Moffett Field, California

Search for other papers by David E. Jordan in
Current site
Google Scholar
PubMed
Close
,
Thaopaul V. Bui NASA Ames Research Center, Moffett Field, California

Search for other papers by Thaopaul V. Bui in
Current site
Google Scholar
PubMed
Close
,
Rei Ueyama NASA Ames Research Center, Moffett Field, California

Search for other papers by Rei Ueyama in
Current site
Google Scholar
PubMed
Close
,
Hanwant B. Singh NASA Ames Research Center, Moffett Field, California

Search for other papers by Hanwant B. Singh in
Current site
Google Scholar
PubMed
Close
,
Troy D. Thornberry NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Troy D. Thornberry in
Current site
Google Scholar
PubMed
Close
,
Andrew W. Rollins NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Andrew W. Rollins in
Current site
Google Scholar
PubMed
Close
,
Ru-Shan Gao NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ru-Shan Gao in
Current site
Google Scholar
PubMed
Close
,
David W. Fahey NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David W. Fahey in
Current site
Google Scholar
PubMed
Close
,
Karen H. Rosenlof NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Karen H. Rosenlof in
Current site
Google Scholar
PubMed
Close
,
James W. Elkins NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by James W. Elkins in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Diskin NASA Langley Research Center, Hampton, Virginia

Search for other papers by Glenn S. Diskin in
Current site
Google Scholar
PubMed
Close
,
Joshua P. DiGangi NASA Langley Research Center, Hampton, Virginia

Search for other papers by Joshua P. DiGangi in
Current site
Google Scholar
PubMed
Close
,
R. Paul Lawson SPEC Inc., Boulder, Colorado

Search for other papers by R. Paul Lawson in
Current site
Google Scholar
PubMed
Close
,
Sarah Woods SPEC Inc., Boulder, Colorado

Search for other papers by Sarah Woods in
Current site
Google Scholar
PubMed
Close
,
Elliot L. Atlas University of Miami, Miami, Florida

Search for other papers by Elliot L. Atlas in
Current site
Google Scholar
PubMed
Close
,
Maria A. Navarro Rodriguez University of Miami, Miami, Florida

Search for other papers by Maria A. Navarro Rodriguez in
Current site
Google Scholar
PubMed
Close
,
Steven C. Wofsy Harvard University, Cambridge, Massachusetts

Search for other papers by Steven C. Wofsy in
Current site
Google Scholar
PubMed
Close
,
Jasna Pittman Harvard University, Cambridge, Massachusetts

Search for other papers by Jasna Pittman in
Current site
Google Scholar
PubMed
Close
,
Charles G. Bardeen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Charles G. Bardeen in
Current site
Google Scholar
PubMed
Close
,
Owen B. Toon University of Colorado Boulder, Boulder, Colorado

Search for other papers by Owen B. Toon in
Current site
Google Scholar
PubMed
Close
,
Bruce C. Kindel University of Colorado Boulder, Boulder, Colorado

Search for other papers by Bruce C. Kindel in
Current site
Google Scholar
PubMed
Close
,
Paul A. Newman NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Paul A. Newman in
Current site
Google Scholar
PubMed
Close
,
Matthew J. McGill NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew J. McGill in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hlavka Science Systems and Applications, Inc., Greenbelt, Maryland

Search for other papers by Dennis L. Hlavka in
Current site
Google Scholar
PubMed
Close
,
Leslie R. Lait Morgan State University, Baltimore, Maryland

Search for other papers by Leslie R. Lait in
Current site
Google Scholar
PubMed
Close
,
Mark R. Schoeberl Science and Technology Corporation, Columbia, Maryland

Search for other papers by Mark R. Schoeberl in
Current site
Google Scholar
PubMed
Close
,
John W. Bergman Bay Area Environmental Research Institute, Sonoma, California

Search for other papers by John W. Bergman in
Current site
Google Scholar
PubMed
Close
,
Henry B. Selkirk University Space Research Associates, Greenbelt, Maryland

Search for other papers by Henry B. Selkirk in
Current site
Google Scholar
PubMed
Close
,
M. Joan Alexander NorthWest Research Associates, Colorado Research Associates Office, Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
,
Ji-Eun Kim NorthWest Research Associates, Colorado Research Associates Office, Boulder, Colorado

Search for other papers by Ji-Eun Kim in
Current site
Google Scholar
PubMed
Close
,
Boon H. Lim Jet Propulsion Laboratory, Pasadena, California

Search for other papers by Boon H. Lim in
Current site
Google Scholar
PubMed
Close
,
Jochen Stutz University of California, Los Angeles, Los Angeles, California

Search for other papers by Jochen Stutz in
Current site
Google Scholar
PubMed
Close
, and
Klaus Pfeilsticker University of Heidelberg, Heidelberg, Germany

Search for other papers by Klaus Pfeilsticker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

CORRESPONDING AUTHOR E-MAIL: Eric J. Jensen, eric.j.jensen@nasa.gov

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

CORRESPONDING AUTHOR E-MAIL: Eric J. Jensen, eric.j.jensen@nasa.gov
Save
  • Bergman, J. W., E. J. Jensen, L. Pfister, and Q. Wang, 2012: Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulations. J. Geophys. Res., 117, D05302, doi:10.1029/2011JD016992.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and Coauthors, 2010: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., A. O’Neill, J. M. Slingo, and H. G. J. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 10791106, doi:10.1002/qj.1999.49712555602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, S., K. H. Rosenlof, T. Thornberry, A. Rollins, and S. Khaykin, 2015: TTL cooling and drying during the January 2013 stratospheric sudden warming. Quart. J. Roy. Meteor. Soc., 141, 30303039, doi:10.1002/qj.2587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, doi:10.1029/2001GL013909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: The tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, A. S. Ackerman, A. Tabazadeh, and O. B. Toon, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res., 106, 17 27317 252, doi:10.1029/2000JD900649.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2013a: Ice nucleation and dehydration in the Tropical Tropopause Layer. Proc. Natl. Acad. Sci. USA, 110, 20412046, doi:10.1073/pnas.1217104110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2013b: The NASA Airborne Tropical TRopopause EXperiment (ATTREX). SPARC Newsletter, No. 41, SPARC International Project Office, Zurich, Switzerland, 15–24.

  • Kindel, B. C., P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui, 2015: Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands. Atmos. Meas. Tech., 8, 11471156, doi:10.5194/amt-8-1147-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, B. Pilson, and Q. Mo, 2006a: In situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203, doi:10.1175/JAS3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: The importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmans, S. J., and K. H. Rosenlof, 2000: Data quality. SPARC assessment of upper tropospheric and stratospheric water vapour, D. Kley, J. M. Russell III, and C. Phillips, Eds., World Climate Research Programme 113, WMO Tech. Doc. WMO/TD-1043, SPARC Rep. 2, 312 pp.

  • Pfister, L., and Coauthors, 2001: Aircraft observations of thin cirrus clouds near the tropical tropopause. J. Geophys. Res., 106, 97659786, doi:10.1029/2000JD900648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell, and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102, 13 21313 234, doi:10.1029/97JD00873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. Rosenlof, R. Portmann, J. Daniel, S. Davis, T. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor changes to decadal variations in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., A. L. Allen, S. Lee, S. K. Miller, and J. C. Witte, 2011: Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. J. Geophys. Res., 116, D05302, doi:10.1029/2009JD013429.

    • Search Google Scholar
    • Export Citation
  • Thornberry, T. D., A. W. Rollins, R. S. Gao, L. A. Watts, S. J. Ciciora, R. J. McLaughlin, and D. W. Fahey, 2015: A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere. Atmos. Meas. Tech., 8, 211244, doi:10.5194/amt-8-211-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., L. Pfister, E. J. Jensen, G. S. Diskin, T. P. Bui, and J. M. Dean-Day, 2014: Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations. J. Geophys. Res. Atmos., 119, 52995316, doi:10.1002/2013JD021381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. J. Jensen, L. Pfister, and J.-E. Kim, 2015: Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer. J. Geophys. Res. Atmos., 120, 10 48310 500, doi:10.1002/2015JD023318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P.-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101, 29 40729 429, doi:10.1029/96JD01780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinstock, E. M., and Coauthors, 2009: Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor. J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteway, J., and Coauthors, 2004: Anatomy of cirrus clouds: Results from the Emerald airborne campaign. Geophys. Res. Lett., 31, L24102, doi:10.1029/2004GL021201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Q. Fu, and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1544 424 25
PDF Downloads 885 183 11