The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment

L. L. Pan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by L. L. Pan in
Current site
Google Scholar
PubMed
Close
,
E. L. Atlas University of Miami, Coral Gables, Florida

Search for other papers by E. L. Atlas in
Current site
Google Scholar
PubMed
Close
,
R. J. Salawitch University of Maryland, College Park, College Park, Maryland

Search for other papers by R. J. Salawitch in
Current site
Google Scholar
PubMed
Close
,
S. B. Honomichl National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. B. Honomichl in
Current site
Google Scholar
PubMed
Close
,
J. F. Bresch National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. F. Bresch in
Current site
Google Scholar
PubMed
Close
,
W. J. Randel National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by W. J. Randel in
Current site
Google Scholar
PubMed
Close
,
E. C. Apel National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by E. C. Apel in
Current site
Google Scholar
PubMed
Close
,
R. S. Hornbrook National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. S. Hornbrook in
Current site
Google Scholar
PubMed
Close
,
A. J. Weinheimer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. J. Weinheimer in
Current site
Google Scholar
PubMed
Close
,
D. C. Anderson University of Maryland, College Park, College Park, Maryland

Search for other papers by D. C. Anderson in
Current site
Google Scholar
PubMed
Close
,
S. J. Andrews University of York, York, United Kingdom

Search for other papers by S. J. Andrews in
Current site
Google Scholar
PubMed
Close
,
S. Baidar University of Colorado Boulder, Boulder, Colorado

Search for other papers by S. Baidar in
Current site
Google Scholar
PubMed
Close
,
S. P. Beaton National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. P. Beaton in
Current site
Google Scholar
PubMed
Close
,
T. L. Campos National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by T. L. Campos in
Current site
Google Scholar
PubMed
Close
,
L. J. Carpenter University of York, York, United Kingdom

Search for other papers by L. J. Carpenter in
Current site
Google Scholar
PubMed
Close
,
D. Chen Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by D. Chen in
Current site
Google Scholar
PubMed
Close
,
B. Dix University of Colorado Boulder, Boulder, Colorado

Search for other papers by B. Dix in
Current site
Google Scholar
PubMed
Close
,
V. Donets University of Miami, Coral Gables, Florida

Search for other papers by V. Donets in
Current site
Google Scholar
PubMed
Close
,
S. R. Hall National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. R. Hall in
Current site
Google Scholar
PubMed
Close
,
T. F. Hanisco NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by T. F. Hanisco in
Current site
Google Scholar
PubMed
Close
,
C. R. Homeyer University of Oklahoma, Norman, Oklahoma

Search for other papers by C. R. Homeyer in
Current site
Google Scholar
PubMed
Close
,
L. G. Huey Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by L. G. Huey in
Current site
Google Scholar
PubMed
Close
,
J. B. Jensen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. B. Jensen in
Current site
Google Scholar
PubMed
Close
,
L. Kaser National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by L. Kaser in
Current site
Google Scholar
PubMed
Close
,
D. E. Kinnison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. E. Kinnison in
Current site
Google Scholar
PubMed
Close
,
T. K. Koenig University of Colorado Boulder, Boulder, Colorado

Search for other papers by T. K. Koenig in
Current site
Google Scholar
PubMed
Close
,
J.-F. Lamarque National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J.-F. Lamarque in
Current site
Google Scholar
PubMed
Close
,
C. Liu Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by C. Liu in
Current site
Google Scholar
PubMed
Close
,
J. Luo National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Luo in
Current site
Google Scholar
PubMed
Close
,
Z. J. Luo City College of New York, New York, New York

Search for other papers by Z. J. Luo in
Current site
Google Scholar
PubMed
Close
,
D. D. Montzka National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. D. Montzka in
Current site
Google Scholar
PubMed
Close
,
J. M. Nicely University of Maryland, College Park, College Park, Maryland

Search for other papers by J. M. Nicely in
Current site
Google Scholar
PubMed
Close
,
R. B. Pierce NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR), Madison, Wisconsin

Search for other papers by R. B. Pierce in
Current site
Google Scholar
PubMed
Close
,
D. D. Riemer University of Miami, Coral Gables, Florida

Search for other papers by D. D. Riemer in
Current site
Google Scholar
PubMed
Close
,
T. Robinson University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by T. Robinson in
Current site
Google Scholar
PubMed
Close
,
P. Romashkin National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by P. Romashkin in
Current site
Google Scholar
PubMed
Close
,
A. Saiz-Lopez Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain

Search for other papers by A. Saiz-Lopez in
Current site
Google Scholar
PubMed
Close
,
S. Schauffler National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. Schauffler in
Current site
Google Scholar
PubMed
Close
,
O. Shieh University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by O. Shieh in
Current site
Google Scholar
PubMed
Close
,
M. H. Stell National Center for Atmospheric Research, Boulder, and Metropolitan State University, Denver, Colorado

Search for other papers by M. H. Stell in
Current site
Google Scholar
PubMed
Close
,
K. Ullmann National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by K. Ullmann in
Current site
Google Scholar
PubMed
Close
,
G. Vaughan University of Manchester, Manchester, United Kingdom

Search for other papers by G. Vaughan in
Current site
Google Scholar
PubMed
Close
,
R. Volkamer University of Colorado Boulder, Boulder, Colorado

Search for other papers by R. Volkamer in
Current site
Google Scholar
PubMed
Close
, and
G. Wolfe NASA Goddard Space Flight Center, Greenbelt, and University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by G. Wolfe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

CURRENT AFFILIATION: Lanzhou University, Lanzhou, China

CORRESPONDING AUTHOR E-MAIL: Laura L. Pan, liwen@ucar.edu

Abstract

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

CURRENT AFFILIATION: Lanzhou University, Lanzhou, China

CORRESPONDING AUTHOR E-MAIL: Laura L. Pan, liwen@ucar.edu
Save
  • Anderson, D. C., and Coauthors, 2016: A pervasive role for biomass burning in tropical high ozone/low water structures. Nat. Commun., 7, 10267, doi:10.1038/ncomms10267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, S. J., and Coauthors, 2016: A comparison of very short-lived halocarbon (VSLS) and DMS aircraft measurements in the Tropical West Pacific from CAST, ATTREX and CONTRAST. Atmos. Meas. Tech., 9, 52135225, doi:10.5194/amt-2016-94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, E. C., and Coauthors, 2015: Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign. J. Geophys. Res. Atmos., 120, 25052523, doi:10.1002/2014JD022121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidar, S., H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer, 2013: The CU Airborne MAX-DOAS instrument: Vertical profiling of aerosol extinction and trace gases. Atmos. Meas. Tech., 6, 719739, doi:10.5194/amt-6-719-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., E. J. Jensen, L. Pfister, and Q. Yang, 2012: Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulations. J. Geophys. Res., 117, D05302, doi:10.1029/2011JD016992.

    • Search Google Scholar
    • Export Citation
  • Calvert, J., A. Mellouki, and J. Orlando, 2011: Mechanisms of Atmospheric Oxidation of the Oxygenates. Oxford University Press, 1634 pp.

    • Crossref
    • Export Citation
  • Carpenter, L. J., and Coauthors, 2010: Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. J. Atmos. Chem., 67, 87140, doi:10.1007/s10874-011-9206-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, L. J., S. M. MacDonald, M. D. Shaw, R. Kumar, R. W. Saunders, R. Parthipan, J. Wilson, and J. M. C. Plane, 2013: Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat. Geosci., 6, 108111, doi:10.1038/ngeo1687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, L. J., S. Reimann, J. B. Burkholder, C. Clerbaux, B. D. Hall, R. Hossaini, J. C. Laube, and S. A. Yvon-Lewis, 2014: Ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol. Scientific assessment of ozone depletion: 2014, Global Ozone Research and Monitoring Project Rep. 55, World Meteorological Organization, 1.1–1.79. [Available online at www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.]

  • Chen, D., and Coauthors, 2016: Airborne measurements of BrO and the sum of HOBr and Br2 over the tropical west Pacific from 1 to 15 km during the Convective Transport of Active Species in the Tropics (CONTRAST) experiment. J. Geophys. Res. Atmos., 121, 12 56012 578, doi:10.1002/2016JD025561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, T., B. P. Luo, T. Peter, H. Vo¨mel, and Q. Fu, 2005: Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett., 32, L06802, doi:10.1029/2004GL021889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, J. H., and Coauthors, 1997: Implications of large scale shifts in tropospheric NOx levels in the remote tropical Pacific. J. Geophys. Res., 102, 28 44728 468, doi:10.1029/97JD00011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of annual-mean equatorial planetary waves. J. Atmos. Sci., 64, 28622880, doi:10.1175/JAS3985.1.

  • Dix, B., S. Baidar, J. F. Bresch, S. R. Hall, K. S. Schmidt, S. Wang, and R. Volkamer, 2013: Detection of iodine monoxide in the tropical free troposphere. Proc. Natl. Acad. Sci. USA, 110, 20352040, doi:10.1073/pnas.1212386110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, R. P., R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez, 2014: Bromine partitioning in the tropical tropopause layer: Implications for stratospheric injection. Atmos. Chem. Phys., 14, 17 85717 905, doi:10.5194/acpd-14-17857-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flemming, J., A. Inness, H. Flentje, V. Huijnen, P. Moinat, M. G. Schultz, and O. Stein, 2009: Coupling global chemistry transport models to ECMWF’s integrated forecast system. Geosci. Model Dev., 2, 253265, doi:10.5194/gmd-2-253-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frieler, K., and Coauthors, 2006: Toward a better quantitative understanding of polar stratospheric ozone loss. Geophys. Res. Lett., 33, L10812, doi:10.1029/2005GL025466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. J. Geophys. Res., 109, D03108, doi:10.1029/2003JD004069.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, G. L., and Coauthors, 1999: Chemical characteristics of Pacific tropospheric air in the region of the intertropical convergence zone and South Pacific convergence zone. J. Geophys. Res., 104, 56775696, doi:10.1029/98JD01357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, N. R. P., and Coauthors 2017: Coordinated Airborne Studies in the Tropics (CAST). Bull. Amer. Meteor. Soc., 98, 145162, doi:10.1175/BAMS-D-14-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, H., K. Kita, and S. Taguchi, 2008: Ozone-enhanced layers in the troposphere over the equatorial Pacific Ocean and the influence of transport of midlatitude UT/LS air. Atmos. Chem. Phys., 8, 26092621, doi:10.5194/acp-8-2609-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, J. M., and Coauthors, 1999: Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996. J. Geophys. Res., 104, 55675583, doi:10.1029/1998JD100074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28, 27992802, doi:10.1029/2001GL013148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huey, L. G., 2007: Measurement of trace atmospheric species by chemical ionization mass spectrometry: Speciation of reactive nitrogen and future directions. Mass Spectrom. Rev., 26, 166184, doi:10.1002/mas.20118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 2003: The Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J. Geophys. Res., 108, 9000, doi:10.1029/2002JD003276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2017: The NASA Airborne Tropical Tropopause Experiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., 98, 129143, doi:10.1175/BAMS-D-14-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vömel, S. J. Oltmans, H. Grassl, and V. Ramanathan, 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry. Science, 274, 230233, doi:10.1126/science.274.5285.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, M. K. W., N.-D. Sze, C. J. Scott, and D. K. Weisenstein, 1997: On the relation between stratospheric chlorine/bromine loading and short-lived tropospheric source gases. J. Geophys. Res., 102, 25 50725 517, doi:10.1029/97JD02431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondo, Y., and Coauthors, 2002: Effects of biomass burning, lightning, and convection on O3, CO, and NOy over the tropical Pacific and Australia in August–October 1998 and 1999. J. Geophys. Res., 107, 8402, doi:10.1029/2001JD000820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krüger, K., S. Tegtmeier, and M. Rex, 2008: Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL) during NH winter. Atmos. Chem. Phys., 8, 813823, doi:10.5194/acp-8-813-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, doi:10.5194/gmd-5-369-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langner, J., and H. Rodhe, 1991: A global three-dimensional model of the tropospheric sulfur cycle. J. Atmos. Chem., 13, 225264, doi:10.1007/BF00058134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, doi:10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millet, D. B., and Coauthors, 2010: Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos. Chem. Phys., 10, 34053425, doi:10.5194/acp-10-3405-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38, 27892796, doi:10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, R., G. Vaughan, H. M. A. Ricketts, L. L. Pan, A. J. Weinheimer, and C. Chemel, 2016: Ozonesonde profiles from the West Pacific Warm Pool: Measurements and validation. Atmos. Chem. Phys., 16, 619634, doi:10.5194/acp-16-619-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicely, J. M., and Coauthors, 2016: An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. J. Geophys. Res. Atmos., 121, 74617488, doi:10.1002/2016JD025067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116, D12201, doi:10.1029/2010JD015462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2015: Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations. Geophys. Res. Lett., 42, 78447851, doi:10.1002/2015GL065562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2007: Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., L. Rivoire, L. L. Pan, and S. B. Honomichl, 2016: Dry layers in the tropical troposphere observed during CONTRAST and global behavior from GFS analyses. J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 2014: A tropical West Pacific OH minimum and implications for stratospheric composition. Atmos. Chem. Phys., 14, 48274841, doi:10.5194/acp-14-4827-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wan, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, B. A., F. E. Grahek, and J. G. Walega, 1992: A small, high-sensitivity, medium-response ozone detector for measurements from light aircraft. J. Atmos. Oceanic Technol., 9, 142148, doi:10.1175/1520-0426(1992)009<0142:ASHSMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiz-Lopez, A., and R. von Glasow, 2012: Reactive halogen chemistry in the troposphere. Chem. Soc. Rev., 41, 64486472, doi:10.1039/c2cs35208g.

  • Saiz-Lopez, A., and Coauthors, 2012: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys., 12, 39393949, doi:10.5194/acp-12-3939-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiz-Lopez, A., R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martín, J. F. Lamarque, and S. Tilmes, 2014: Iodine chemistry in the troposphere and its effect on ozone. Atmos. Chem. Phys., 14, 13 11913 143, doi:10.5194/acp-14-13119-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiz-Lopez, A., and Coauthors, 2015: Injection of iodine to the stratosphere. Geophys. Res. Lett., 42, 68526859, doi:10.1002/2015GL064796.

  • Salawitch, R. J., D. K. Weisenstein, L. J. Kovalenko, C. E. Sioris, P. O. Wennberg, K. Chance, M. K. W. Ko, and C. A. McLinden, 2005: Sensitivity of ozone to bromine in the lower stratosphere. Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and A. E. Dessler, 2011: Dehydration of the stratosphere. Atmos. Chem. Phys., 11, 84338446, doi:10.5194/acp-11-8433-2011.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H., and Z. Luo, 2012: Where is the level of neutral buoyancy for deep convection? Geophys. Res. Lett., 39, L15809, doi:10.1029/2012GL052638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., S. J. Oltmans, D. W. Tarasick, P. von der Gathen, H. G. J. Smit, and J. C. Witte, 2011: Strategic ozone sounding networks: Review of design and accomplishments. Atmos. Environ., 45, 21452163, doi:10.1016/j.atmosenv.2010.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thouret, V., J. Y. N. Cho, M. J. Evans, R. E. Newell, M. A. Avery, J. D. W. Barrick, G. W. Sachse, and G. L. Gregory, 2001: Tropospheric ozone layers observed during PEM-Tropics B. J. Geophys. Res., 106, 32 52732 538, doi:10.1029/2001JD900011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkamer, R., and Coauthors, 2015: Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: Comparison with aircraft-/ship-based in situ and lidar measurements. Atmos. Meas. Tech., 8, 21212148, doi:10.5194/amt-8-2121-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and K. Diaz, 2010: Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere. Atmos. Meas. Tech., 3, 495505, doi:10.5194/amt-3-495-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and Coauthors, 2015: Active and widespread halogen chemistry in the tropical and subtropical free troposphere. Proc. Natl. Acad. Sci. USA, 112, 92819286, doi:10.1073/pnas.1505142112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1989: Some thoughts about the West Pacific Warm Pool. Proc. Western Pacific Int. Meeting and Workshop on TOGA COARE, Nouméa, New Caledonia, ORSTOM, 99–109.

  • Yang, Q., Q. Fu, and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and D. B. Parsons, 1999: A mechanism for the intrusion of dry air into the tropical western Pacific region. J. Atmos. Sci., 56, 15241546, doi:10.1175/1520-0469(1999)056<1524:APMFTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1317 464 31
PDF Downloads 631 174 20