So, How Much of the Earth’s Surface Is Covered by Rain Gauges?

Chris Kidd University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Chris Kidd in
Current site
Google Scholar
PubMed
Close
,
Andreas Becker Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Andreas Becker in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
,
Catherine L. Muller Royal Meteorological Society, Reading, and School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Catherine L. Muller in
Current site
Google Scholar
PubMed
Close
,
Paul Joe Meteorological Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Paul Joe in
Current site
Google Scholar
PubMed
Close
,
Gail Skofronick-Jackson NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gail Skofronick-Jackson in
Current site
Google Scholar
PubMed
Close
, and
Dalia B. Kirschbaum NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dalia B. Kirschbaum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across Earth’s surface for hydrometeorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth owing to temporal sampling resolutions, periods of operation, data latency, and data access. Numbers of gauges range from a few thousand available in near–real time to about 100,000 for all “official” gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, autocorrelation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC)–available gauge is independent and represents a surrounding area of 5-km radius, this represents only about 1% of Earth’s surface. The situation is further confounded for snowfall, which has a greater measurement uncertainty.

CORRESPONDING AUTHOR E-MAIL: Chris Kidd, chris.kidd@nasa.gov

Abstract

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across Earth’s surface for hydrometeorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth owing to temporal sampling resolutions, periods of operation, data latency, and data access. Numbers of gauges range from a few thousand available in near–real time to about 100,000 for all “official” gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, autocorrelation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC)–available gauge is independent and represents a surrounding area of 5-km radius, this represents only about 1% of Earth’s surface. The situation is further confounded for snowfall, which has a greater measurement uncertainty.

CORRESPONDING AUTHOR E-MAIL: Chris Kidd, chris.kidd@nasa.gov
Save
  • Arkin, P., and P. Ardunay, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, doi:10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P., and P. Xie, 1994: The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 75, 401419, doi:10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, S., D. Cornford, and L. Bastin, 2015: How good are citizen weather stations? Addressing a biased opinion. Weather, 70, 7584, doi:10.1002/wea.2316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space-time stochastic model. J. Geophys. Res., 95, 21952205, doi:10.1029/JD095iD03p02195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binau, S., 2012: The PING Project. Accessed 16 November 2016. [Available online at http://mping.nssl.noaa.gov.]

  • Cifelli, R., N. Doesken, P. Kennedy, L. D. Carey, S. A. Rutledge, C. Gimmestad, and T. Depue, 2005: The Community Collaborative Rain, Hail, and Snow Network: Informal education for scientists and citizens. Bull. Amer. Meteor. Soc., 86, 10691077, doi:10.1175/BAMS-86-8-1069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., and G. R. Essenberg, 2001: Comparative rainfall observations from pit and above ground rain gauges with and without wind shields. Water Resour. Res., 37, 32533263, doi:10.1029/2001WR000541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GCOS, 2010: Implementation plan for the Global Observing System for Climate in Support of the UNFCCC. WMO Tech. Doc. WMO/TD-1523, 186 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf.]

  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp. [Available online at www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Goodwin, S., 2013: Raspberry Pi. Smart Home Automation with Linux and Raspberry Pi, M. Lowman, Ed., Apress Publishers, 275–296, doi:10.1007/978-1-4302-5888-9_8.

    • Crossref
    • Export Citation
  • Groisman, P. Ya., and D. R. Legates, 1995: Documenting and detecting long-term precipitation trends: Where are we and what should be done? Climatic Change, 31, 601622, doi:10.1007/BF01095163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and G. J. Ciach, 2001: Estimation of rainfall interstation correlation. J. Hydrometeor., 2, 621629, doi:10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, doi:10.1002/met.284.

  • Kummerow, C., W. Barnes, T. Korzu, J. Shuie, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809917, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minda, H., and N. Tsuda, 2012: Low-cost laser disdrometer with the capability of hydrometeor imaging. IEEJ Trans. Electr. Electron. Eng., 7, S132S138, doi:10.1002/tee.21827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. L., 2013: Mapping snow depth across the West Midlands using social media-generated data. Weather, 68, 82, doi:10.1002/wea.2103.

  • Muller, C. L., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol., 35, 31853203, doi:10.1002/joc.4210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 1988: Earth System Science: A Closer View. NASA, 208 pp.

  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18891922, doi:10.1002/joc.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitu, R., and K. Wong, 2010a: CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations. WMO Instruments and Observing Methods Rep. 102, WMO/TD-1544, 57 pp. [Available online at www.wmo.int/pages/prog/www/IMOP/publications/IOM-102_SolidPrecip.pdf.]

  • Nitu, R., and K. Wong, 2010b: Measurement or solid precipitation at automatic weather stations: Challenges and opportunities. TECO-2010-WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, Finland, WMO. [Available online atwww.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/1_Keynote_2_Nitu_Canada.doc.]

  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, doi:10.1073/pnas.1217961110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. C., and J. C. Rodda, 1969: Rain, wind and the aerodynamic characteristics of raingauges. Meteor. Mag., 98, 113120.

  • Schneider, U., M. Ziese, A. Becker, A. Meyer-Christoffer, and P. Finger, 2015: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, 14 pp. [Available online atftp://ftp-anon.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf.]

  • Sevruk, B., and S. Klemm, 1989a: Types of standard precipitation gauges. Proc. WMI/IAHS/ETH Workshop on Precipitation Measurement, St. Moritz, Switzerland, WMO Tech. Doc. 32, 589 pp.

  • Sevruk, B., and S. Klemm, 1989b: Catalogue of national standard precipitation gauges. Instruments and Observing Methods Rep. 39, WMO/TD-313, 50 pp. [Available online atwww.wmo.int/pages/prog/www/IMOP/publications/IOM-39.pdf.]

  • Shen, Y., and A. Y. Xiong, 2016: Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol., 36, 252265, doi:10.1002/joc.4341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Strangeways, I. C., 2003: Measuring the Natural Environment. 2nd ed. Cambridge University Press, 534 pp.

    • Crossref
    • Export Citation
  • Strangeways, I. C., 2004: Improving precipitation measurement. Int. J. Climatol., 24, 14431460, doi:10.1002/joc.1075.

  • Strangeways, I. C., 2010: A history of rain gauges. Weather, 65, 133138, doi:10.1002/wea.548.

  • Thornes, J., and Coauthors, 2010: Communicating the value of atmospheric services. Meteor. Appl., 17, 243250, doi:10.1002/met.200.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tweddle, J. C., L. D. Robinson, M. J. O. Pocock, and H. E. Roy, 2012: Guide to citizen science: Developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. Natural History Museum and NERC Centre for Ecology & Hydrology for UK-EOF, 29 pp. [Available online atwww.ukeof.org.uk/documents/guide-to-citizen-science/view.]

  • Vuerich, E., C. Monesi, L. G. Lanza, L. Stagi, and E. Lanzinger, 2009: WMO field intercomparison of rainfall intensity gauges. WMO Instruments and Observing Methods Rep. 99, WMO/TD-1504, 290 pp. [Available online at www.wmo.int/pages/prog/www/IMOP/publications/IOM-99_FI-RI.pdf.]

  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. World Meteorological Organization WMO-8, 681 pp. [Available online at www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • World Meteorological Organization, 2011: Observing stations and WMO catalogue of radiosondes. WMO Publ. 9, Vol. A, accessed 8 August 2015. [Available online atwww.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm.]

  • Xie, P., M. Chen, and W. Shi, 2010: CPC unified gauge-based analysis of global daily precipitation. 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc, 2.3A. [Available online athttps://ams.confex.com/ams/90annual/techprogram/paper_163676.htm.]

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5005 1398 97
PDF Downloads 3689 962 61