Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?

Elizabeth J. Kendon Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Elizabeth J. Kendon in
Current site
Google Scholar
PubMed
Close
,
Nikolina Ban Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Nikolina Ban in
Current site
Google Scholar
PubMed
Close
,
Nigel M. Roberts Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Nigel M. Roberts in
Current site
Google Scholar
PubMed
Close
,
Hayley J. Fowler School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Hayley J. Fowler in
Current site
Google Scholar
PubMed
Close
,
Malcolm J. Roberts MetOffice@Reading, Reading, United Kingdom

Search for other papers by Malcolm J. Roberts in
Current site
Google Scholar
PubMed
Close
,
Steven C. Chan School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Steven C. Chan in
Current site
Google Scholar
PubMed
Close
,
Jason P. Evans University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Jason P. Evans in
Current site
Google Scholar
PubMed
Close
,
Giorgia Fosser CNRM-GAME, CNRS, and Météo-France, Toulouse, France

Search for other papers by Giorgia Fosser in
Current site
Google Scholar
PubMed
Close
, and
Jonathan M. Wilkinson Met Office, Exeter, United Kingdom

Search for other papers by Jonathan M. Wilkinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.

CURRENT AFFILIATION: Met Office Hadley Centre, Exeter, United Kingdom

CORRESPONDING AUTHOR E-MAIL: Elizabeth J. Kendon, elizabeth.kendon@metoffice.gov.uk

A supplement to this article is available online (10.1175/BAMS-D-15-0004.2)

Abstract

Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.

CURRENT AFFILIATION: Met Office Hadley Centre, Exeter, United Kingdom

CORRESPONDING AUTHOR E-MAIL: Elizabeth J. Kendon, elizabeth.kendon@metoffice.gov.uk

A supplement to this article is available online (10.1175/BAMS-D-15-0004.2)

Supplementary Materials

    • Supplemental Materials (PDF 995.64 KB)
Save
  • Argueso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 21832199, doi:10.1007/s00382-013-1789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argueso, D., J. P. Evans, A. J. Pitman, and A. Di Luca, 2015: Effects of city expansion on heat stress under climate change conditions. PLoS One, 10, e0117066, doi:10.1371/journal.pone.0117066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schar, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, doi:10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schar, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, doi:10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berckmans, J., T. Woollings, M.-E. Demory, P.-L. Vidale, and M. J. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, doi:10.1002/asl2.412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, doi:10.1256/qj.02.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CH2011, 2011: Swiss climate change scenarios CH2011. C2SM/MeteoSwiss/ETH/NCCR Climate/OcCC, 88 pp. [Available online at http://ch2011.ch/.]

  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, C. A. T. Ferro, and D. B. Stephenson, 2013: Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Climate Dyn., 41, 14751495, doi:10.1007/s00382-012-1568-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, C. A. T. Ferro, and C. A. T. Ferro, 2014a: The value of high-resolution Met Office regional climate models in the simulation of multi-hourly precipitation extremes. J. Climate, 27, 61556174, doi:10.1175/JCLI-D-13-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, and N. M. Roberts, 2014b: Projected increases in summer and winter UK sub-daily precipitation extremes from high resolution regional climate models. Environ. Res. Lett., 9, 084019, doi:10.1088/1748-9326/9/8/084019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dale, M., B. Luck, H. J. Fowler, S. Blenkinsop, E. Gill, J. Bennett, E. J. Kendon, and S. C. Chan, 2016: New climate change rainfall estimates for sustainable drainage. Proc. Inst. Civ. Eng.: Eng. Sustainability, doi:10.1680/jensu.15.00030, in press.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demory, M.-E., P. L. Vidale, M. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, doi:10.1007/s00382-013-1924-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., F. Ji, C. Lee, P. Smith, D. Argueso, and L. Fita, 2014: Design of a regional climate modelling projection ensemble experiment—NARCliM. Geosci. Model Dev., 7, 621629, doi:10.5194/gmd-7-621-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, doi:10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2016: Climate change in the next 30 years: what can a convection-permitting model tell us that we did not already know? Climate Dyn., doi:10.1007/s00382-016-3186-4, in press.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2014: Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Climate, 27, 65816589, doi:10.1175/JCLI-D-13-00777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull., 58(3), 175183.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteor. Appl., 5, 116, doi:10.1017/S1350482798000577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, W. H., and G. Cappelluti, 2011: A global hail climatology using the UK Met Office convection diagnosis procedure (CDP) and model analyses. Meteor. Appl., 18, 446458, doi:10.1002/met.236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2015: Mixing length controls on high resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., 141, 272284, doi:10.1002/qj.2356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and D. J. Griggs, 2004: Ensembles-based predictions of climate changes and their impacts. Eos, Trans. Amer. Geophys. Union, 85, 566, doi:10.1029/2004EO520005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulations at cloud-resolving scales. Meteor. Z., 17, 383394, doi:10.1127/0941-2948/2008/0303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high resolution regional climate model. J. Climate, 25, 57915806, doi:10.1175/JCLI-D-11-00562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, doi:10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A., J. Beersma, J. Bessembinder, B. Van den Hurk, and G. Lenderink, 2015: KNMI’14 climate scenarios for the Netherlands: A guide for professionals in climate adaptation. KNMI, 34 pp. [Available online at http://projects.knmi.nl/publications/showAbstract.php?id=10756.]

  • Knote, C., G. Heinemann, and B. Rockel, 2010: Changes in weather extremes: Assessment of return values using high resolution climate simulations at convection-resolving scale. Meteor. Z., 19, 1123, doi:10.1127/0941-2948/2010/0424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2014: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084. doi:10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott, 2012: Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Climate Change, 2, 125131, doi:10.1038/nclimate1344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, doi:10.1175/2008WAF2222152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311312, doi:10.1029/2009EO360002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., T. C. Richmond, and G. W. Yohe, Eds., 2014: Climate change impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp., doi:10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Mizielinski, M. S., and Coauthors, 2014: High-resolution global climate modelling: The UPSCALE project, a large simulation campaign. Geosci. Model Dev., 7, 16291640, doi:10.5194/gmd-7-1629-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., and Coauthors, 2009: UK climate projections science report: Climate change projections. Met Office Hadley Centre, 10 pp. [Available online at http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87893.]

  • Pan, L.-L., S.-H. Chen, D. Cayan, M.-Y. Lin, Q. Hart, M.-H. Zhang, Y. Liu, and J. Wang, 2011: Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Climate Dyn., 37, 20052020, doi:10.1007/s00382-010-0961-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 99199933, doi:10.1029/92JD00719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett., 38, L23703, doi:10.1029/2011GL049573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2014: Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF forecasts. Wea. Forecasting, 29, 393402, doi:10.1175/WAF-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolle, M. H., O. Gutjahr, G. Busch, and J. C. Thiele, 2014: Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study. J. Geophys. Res. Atmos., 119, 27112724, doi:10.1002/2013JD020877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, doi:10.1007/s00382-010-0826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trusilova, K., B. Fruh, S. Brienen, A. Walter, V. Masson, G. Pigeon, and P. Becker, 2013: Implementation of an urban parameterization scheme into the Regional Climate Model COSMO-CLM. J. Appl. Meteor. Climatol., 52, 22962311, doi:10.1175/JAMC-D-12-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, doi:10.5194/gmd-4-919-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weusthoff, T., F. Ament, M. Arpagaus, and M. W. Rotach, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Wea. Rev., 138, 34183433, doi:10.1175/2010MWR3380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, J. M., and F. J. Bornemann, 2014: A lightning forecast for the London 2012 Olympics opening ceremony. Weather, 69, 1619, doi:10.1002/wea.2176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775, doi:10.1002/joc.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4646 1790 90
PDF Downloads 2633 631 51