What Is the Polar Vortex and How Does It Influence Weather?

Darryn W. Waugh Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
,
Adam H. Sobel Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The term polar vortex has become part of the everyday vocabulary, but there is some confusion in the media, general public, and science community regarding what polar vortices are and how they are related to various weather events. Here, we clarify what is meant by polar vortices in the atmospheric science literature. It is important to recognize the existence of two separate planetary-scale circumpolar vortices: one in the stratosphere and the other in the troposphere. These vortices have different structures, seasonality, dynamics, and impacts on extreme weather. The tropospheric vortex is much larger than its stratospheric counterpart and exists year-round, whereas the stratospheric polar vortex forms in fall but disappears in the spring of each year. Both vortices can, in some circumstances, play a role in extreme weather events at the surface, such as cold-air outbreaks, but these events are not the consequence of either the existence or gross properties of these two vortices. Rather, cold-air outbreaks are most directly related to transient, localized displacements of the edge of the tropospheric polar vortex that may, in some circumstances, be related to the stratospheric polar vortex, but there is no known one-to-one connection between these phenomena.

CORRESPONDING AUTHOR E-MAIL: Darryn Waugh, waugh@jhu.edu

Abstract

The term polar vortex has become part of the everyday vocabulary, but there is some confusion in the media, general public, and science community regarding what polar vortices are and how they are related to various weather events. Here, we clarify what is meant by polar vortices in the atmospheric science literature. It is important to recognize the existence of two separate planetary-scale circumpolar vortices: one in the stratosphere and the other in the troposphere. These vortices have different structures, seasonality, dynamics, and impacts on extreme weather. The tropospheric vortex is much larger than its stratospheric counterpart and exists year-round, whereas the stratospheric polar vortex forms in fall but disappears in the spring of each year. Both vortices can, in some circumstances, play a role in extreme weather events at the surface, such as cold-air outbreaks, but these events are not the consequence of either the existence or gross properties of these two vortices. Rather, cold-air outbreaks are most directly related to transient, localized displacements of the edge of the tropospheric polar vortex that may, in some circumstances, be related to the stratospheric polar vortex, but there is no known one-to-one connection between these phenomena.

CORRESPONDING AUTHOR E-MAIL: Darryn Waugh, waugh@jhu.edu
Save
  • Ambaum, M. H., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, doi:10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AMS, 2015: Polar vortex. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/polar_vortex.]

  • Angell, J. K., 1992: Relation between 300-mb north polar vortex and equatorial SST, QBO, and sunspot number and the record contraction of the vortex in 1988–89. J. Climate, 5, 2229, doi:10.1175/1520-0442(1992)005<0022:RBMNPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 2006: Changes in the 300-mb north circumpolar vortex, 1963–2001. J. Climate, 19, 29842995, doi:10.1175/JCLI3778.1.

  • Angell, J. K., and J. Korshover, 1975: Evidence for a quasi-biennial variation in eccentricity of the north polar vortex. J. Atmos. Sci., 32, 634635, doi:10.1175/1520-0469(1975)032<0634:EFAQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, doi:10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, R. X., 2002: Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate, 15, 268277, doi:10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasefield, C. J., 1950: Winds and temperatures in the lower stratosphere. J. Meteor., 7, 6669, doi:10.1175/1520-0469(1950)007<0066:WATITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., and A. R. McNicoll, 2000: Interannual variations in the Southern Hemisphere winter circumpolar vortex: Relationships with the semiannual oscillation. J. Climate, 13, 991999, doi:10.1175/1520-0442(2000)013<0991:IVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 13581371, doi:10.1175/2008MWR2670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, doi:10.1029/2005JD006273.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, W. A. Lahoz, and P. Berrisford, 2005: The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci., 62, 590602, doi:10.1175/JAS-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., and R. E. Davis, 2003: Northern Hemisphere circumpolar vortex trends and climate change implications. J. Geophys. Res., 108, 4423, doi:10.1029/2002JD002958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and M. Sharp, 2007: Influence of the Arctic circumpolar vortex on the mass balance of Canadian High Arctic glaciers. J. Climate, 20, 45864599, doi:10.1175/JCLI4268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutenburg, B., 1949: New data on the lower stratosphere. Bull. Amer. Meteor. Soc., 30, 6264.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashki, K., and J. Khoshhal, 2013: Investigation of the role of polar vortex in Iranian first and last snowfalls. J. Geogr. Geol., 5, 161168, doi:10.5539/jgg.v5n4p161.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, doi:10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaSeur, N. E., 1954: On the asymmetry of the middle-latitude circumpolar current. J. Meteor., 11, 4375, doi:10.1175/1520-0469(1954)011<0043:OTAOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, C. E., 1959: The stratospheric polar vortex in winter. J. Geophys. Res., 64, 749764, doi:10.1029/JZ064i007p00749.

  • Read, P. L., 2011: Dynamics and circulation regimes of terrestrial planets. Planet. Space Sci., 59, 900914, doi:10.1016/j.pss.2010.04.024.

  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 21092122, doi:10.1175/JAS3732.1.

  • Rossby, C. G., and H. C. Willett, 1948: The circulation of the upper troposphere and lower stratosphere. Science, 108, 643652, doi:10.1126/science.108.2815.643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherhag, R., 1948: Neue Methoden der Wetteranalyse und Wetterprognose. Springer, 424 pp.

    • Crossref
    • Export Citation
  • Schoeberl, M. R., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 4652, doi:10.1126/science.251.4989.46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, doi:10.1126/science.343.6172.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and W. J. Randel, 1999: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56, 15941613, doi:10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2010: Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 43–57.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12021 2972 205
PDF Downloads 7522 1641 111