• Anderson, K. B., and Coauthors, 2004: The RED Experiment: An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull. Amer. Meteor. Soc., 85, 13551365, doi:10.1175/BAMS-85-9-1355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and M. Zhu, 2006: Coastal effects on radar propagation in atmospheric ducting conditions. Meteor. Appl., 13, 5362, doi:10.1017/S1350482705001970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrios, A. E., 1992: Parabolic equation modeling in horizontally inhomogeneous environments. IEEE Trans. Antennas Propag., 40, 791797, doi:10.1109/8.155744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, M. R., 1985: Modelling the radar evaporative duct. RANRL Tech. Note 3/85, 43 pp. [Available online at www.dtic.mil/dtic/tr/fulltext/u2/a161542.pdf.]

  • Bradley, E. F., 2003: Observational techniques. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, 280–290.

    • Crossref
    • Export Citation
  • Brooks, I. M., A. K. Goroch, and D. P. Rogers, 1999: Observations of strong surface radar ducts over the Persian Gulf. J. Appl. Meteor., 38, 12931310, doi:10.1175/1520-0450(1999)038<1293:OOSSRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 18651877, doi:10.1175/BAMS-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burba, G., and D. Anderson, 2012: A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications. Li-Cor Biosciences. 212 pp.

  • Burk, S. D., T. Haack, L. T. Rogers, and L. J. Wagner, 2003: Island wake dynamics and wake influence on evaporation duct and radar propagation. J. Appl. Meteor., 42, 349367, doi:10.1175/1520-0450(2003)042<0349:IWDAWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, W. G., 1968: VHF Radiowave Propagation in the Troposphere. Intertext, 130 pp.

  • Claverie, J., and Y. Hurtaud, 1992: Propagation transhorizon en atmosphère marine—Modélisation et nouveaux résultats expérimentaux. Remote Sensing of the Propagation Environment: Papers Presented at the Electromagnetic Wave Propagation Panel Symposium, Advisory Group for Aerospace Research and Development Conf. Publ. AGARD-CP-502, 4.1–4.14.

  • Claverie, J., Y. Hurtaud, Y. De Fromont, and A. Junchat, 1994: Modelisations profils verticaux d’indice de refraction et de en atmosphere marine. Propagation Assessment in Coastal Environments, Advisory Group for Aerospace Research and Development Conf. Publ. AGARD-CP-567, 29.1–29.9.

  • Claverie, J., B. Tranchant, P. Mestayer, A. M. J. Van Eijk, and Y. Hurtaud, 1998: Effets de la refraction atmospherique sur la propagation infrarouge dans la basse atmosphere marine–comparaison des modeles SEACLUSE et PIRAM. Proc. Symp. on E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations, Naples, Italy, NATO RTO, 5.1–5.12.

  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf.]

  • Craig, K. H., and M. F. Levy, 1991: Parabolic equation modelling of the effects of multipath and ducting on radar systems. IEE Proc., 138F, 153162, 10.1049/ip-f-2.1991.0021.

    • Search Google Scholar
    • Export Citation
  • Dockery, G. D., and J. R. Kuttler, 1996: An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation. IEEE Trans. Antennas Propag., 44, 15921599, doi:10.1109/8.546245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essen, H., H.-H. Fuchs, and A. Pagels, 2006: Radar propagation in coastal environments: VAMPIRA results. Optics in Atmospheric Propagation and Adaptive Systems IX, A. Kohnle and K. Stein, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6364), 636408–1–636408-8, doi:10.1117/12.693498.

    • Crossref
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, doi:10.1007/s10546-006-9048-6.

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garrett, S. A., D. E. Cook, and R. E. Marshall, 2009: The Sea Breeze 2009 Experiment: Investigating the impact of ocean and atmospheric processes on radio performance in the Bay of Plenty, New Zealand. Wea. Climate, 31, 82100.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515, doi:10.1023/A:1002452529672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., and S. D. Burk, 2001: Summertime marine refractivity conditions along coastal California. J. Appl. Meteor., 40, 673687, doi:10.1175/1520-0450(2001)040<0673:SMRCAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., C. Wang, S. Garrett, A. Glazer, J. Mailhot, and R. Marshall, 2010: Mesoscale modeling of boundary layer refractivity and atmospheric ducting. J. Appl. Meteor. Climatol., 49, 24372457, doi:10.1175/2010JAMC2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harish, A. R., and M. Sachidananda, 2007: Antennas and Wave Propagation. Oxford University Press, 402 pp.

  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holm, P. D., 2007: Wide angle shift-map PE for a piecewise linear terrain—A finite-difference approach. IEEE Trans. Antennas Propag., 55, 27732789, doi:10.1109/TAP.2007.905865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtaud, Y., and J. Claverie, 2015: Geophysical information inputs for computing the performance of EM systems in littoral environments. Radio Sci. Bull., 353, 1016.

    • Search Google Scholar
    • Export Citation
  • Hurtaud, Y., J. Claverie, E. Mandine, and M. Aidonidis, 2008: Une préfiguration des futures aides tactiques: le code PREDEM. Rev. Electr. Electron., 3141.

    • Search Google Scholar
    • Export Citation
  • Karimian, A., C. Yardim, T. Haack, P. Gerstoft, W. S. Hodgkiss, and T. Rogers, 2013: Toward the assimilation of the atmospheric surface layer using numerical weather prediction and radar clutter observations. J. Appl. Meteor. Climatol., 52, 23452355, doi:10.1175/JAMC-D-12-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerans, A. J., and G. S. Woods, 2004: Observations of anomalous over the horizon microwave radio propagation inside the tropical maritime evaporation duct in North Queensland, Australia. Part One: Normal ducting events. Proceedings of URSI Commission F Triennium Open Symposium 2004, URSI Commission F.

  • Kerans, A. J., A. S. Kulessa, J. Hermann, and G. S. Woods, 2000: Evaporation duct statistics around Australia and the West Pacific. Proc. AP2000 Millenium Conf. on Antennas and Propagation, Davos, Switzerland, European Space Agency.

  • Kulessa, A. S., and J. M. Hacker, 2010: Determining the refractive index structure in the littoral marine boundary layer by in situ measurements and sensing techniques. 2010 International Conference on Electromagnetics in Advanced Applications, IEEE, 172–175, doi:10.1109/ICEAA.2010.5652999.

    • Crossref
    • Export Citation
  • Kulessa, A. S., M. L. Heron, and G. S. Woods, 1997: Temporal variations in evaporation duct heights. Proc. Workshop on the Applications of Radio Science, Leura, NSW, Australia, National Committee for Radio Science, Australian Academy of Science, 165–170.

  • Kulessa, A. S., G. S. Woods, B. Piper, and M. L. Heron, 1998: Line-of-sight EM propagation experiment at 10.25 GHz in the tropical ocean evaporation duct. IEE Proc., 145H, 6569, doi:10.1049/ip-map:19981474.

    • Search Google Scholar
    • Export Citation
  • Lee, X., W. J. Massman, and B. Law, 2008: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer, 250 pp.

  • Levy, M. F., 2000: Parabolic Equation Methods for Electromagnetic Wave Propagation. Electromagnetic Waves Series, Vol. 45, IEE, 336 pp.

    • Crossref
    • Export Citation
  • Lowry, A. R., C. Rocken, S. V. Sokolovskiy, and K. D. Anderson, 2002: Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Sci., 37, 10411060, doi:10.1029/2000RS002565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, R. E., and K. L. Horgan, 2011: Multi-wavelength radar target detection in an extreme advection duct event. Int. J. Microwave Wireless Technol., 3, 373381, doi:10.1017/S1759078711000225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic turbulent mixing laws in the atmospheric surface layer. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Musson-Genon, L., S. Gauthier, and E. Bruth, 1992: A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci., 27, 635644, doi:10.1029/92RS00926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, T., and R. Haas, 2010: Impact of atmospheric turbulence on geodetic very long baseline interferometry. J. Geophys. Res., 115, B03407, doi:10.1029/2009JB006579.

    • Search Google Scholar
    • Export Citation
  • Page, G., S. Bainbridge, and S. Gardner, 2014: Implementation of low-cost, long range microwave links on the Great Barrier Reef using evaporation duct transmission. Proc. IEEE Oceans Conf. Taipei, Taipei, Taiwan, IEEE, 4 pp., doi:10.1109/OCEANS-TAIPEI.2014.6964340.

    • Crossref
    • Export Citation
  • Patterson, W., 2008: The propagation factor, Fp, in the radar equation. The Radar Handbook, M. Skolnik, Ed., 3rd ed. McGraw Hill, 26.1–26.28.

  • Paulus, R. A., 1994: VOCAR: An experiment in variability of coastal atmospheric refractivity. IGARSS'94: International Geoscience and Remote Symposium; Surface and Atmospheric Sensing: Technologies, Data Analysis and Interpretation, Vol. 1, IEEE, 386–388, doi:10.1109/IGARSS.1994.399132.

    • Crossref
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991, doi:10.1007/BF01025401.

  • Rogers, L. T., 1996: Remote sensing of evaporation ducts using SHF propagation measurements. Remote Sensing: A Valuable Source of Information, AGARD Conference Series 582, Advisory Group for Aerospace Research and Development Conf. Publ. AGARD-CP-582, 7.1–7.13.

  • Rogers, L. T., C. P. Hattan, and J. K. Stapleton, 2000: Estimating evaporation duct heights from radar sea echo. Radio Sci., 35, 955966, doi:10.1029/1999RS002275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, S. R., 2003: Outdoor mobile propagation. Propagation of Radiowaves, 2nd ed. L. W. Barclay, Ed., Electromagnetic Wave Series, Vol. 502, Institution of Engineering and Technology, 185–222.

    • Crossref
    • Export Citation
  • Schotanus, P., F. T. M. Niewstadt, and H. A. R. de Bruin, 1983: Temperature measurement with a sonic anemometer and its applications to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, doi:10.1007/BF00164332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silveira, R. B., and O. Massambani, 1995: The effects of atmospheric circulation on line-of-sight microwave links. Radio Sci., 30, 14471458, doi:10.1029/95RS01355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stapleton, J., D. Shanklin, V. Wiss, T. Nguyen, and E. Burgess, 2001: Radar propagation modeling assessment using measured refractivity and directly sensed propagation ground truth. Naval Surface Warfare Center Dahlgren Division Tech. Rep. NSWCDD/TR-01/132, 49 pp.

  • Thompson, W. T., and T. Haack, 2011: An investigation of sea surface temperature influence on microwave refractivity: The Wallops-2000 Experiment. J. Appl. Meteor. Climatol., 50, 23192337, doi:10.1175/JAMC-D-10-05002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., D. Wilson, T. Haack, P. Clark, H. Lean, and R. Marshall, 2012: Effects of initial and boundary conditions of mesoscale models on simulated atmospheric refractivity. J. Appl. Meteor. Climatol., 51, 115131, doi:10.1175/JAMC-D-11-012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, G. S., C. M. Palazzi, A. Kulessa, and D. L. Maskell, 2006: ReefGrid–A communications network on the Great Barrier Reef. Proc. Oceans 2006 Asia-Pacific Conf., Singapore, IEEE, 6 pp., doi:10.1109/OCEANSAP.2006.4393850.

    • Crossref
    • Export Citation
  • Woods, G. S., A. Ruxton, C. Huddlestone-Holmes, and G. Gigan, 2009: High-capacity, long-range, over ocean, microwave link using the evaporation duct. IEEE Oceanic Eng., 34, 323330, doi:10.1109/JOE.2009.2020851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiaofeng, Z., and H. Sixun, 2012: Estimation of atmospheric duct structure using radar sea clutter. J. Atmos. Sci., 69, 28082818, doi:10.1175/JAS-D-12-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yardim, C., 2007: Statistical estimation and tracking of refractivity from radar clutter. Ph.D. dissertation, University of California, San Diego, 136 pp. [Available online at http://escholarship.org/uc/item/3xn5116w.]

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 20
PDF Downloads 74 74 23

The Tropical Air–Sea Propagation Study (TAPS)

View More View Less
  • 1 Cyber and Electronic Warfare Division, Defence Science and Technology Organisation, Edinburgh, and Airborne Research Australia, School of the Environment, Flinders University, Parafield Airport, South Australia, Australia
  • 2 Atmospheric Propagation Branch, Space and Naval Warfare Systems Center Pacific, San Diego, California
  • 3 Centre de Recherche des Ecoles de Saint-Cyr Coetquidan (CREC), and Institut d’Électronique et de Télécommunications de Rennes, Guer, France
  • 4 Defence Technology Agency, Auckland, New Zealand
  • 5 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • 6 Airborne Research Australia, School of the Environment, Flinders University, Parafield Airport, South Australia, Australia
  • 7 Cyber and Electronic Warfare Division, Defence Science and Technology Organisation, Edinburgh, South Australia, Australia
  • 8 Dahlgren Division, Naval Surface Warfare Center, Dahlgren, Virginia
  • 9 Direction Générale de l’Armement Maîtrise de l’information, Rennes-Armées, France
  • 10 Defence Technology Agency, Auckland, New Zealand
  • 11 Mount Pleasant Meteorology, Woodford, Virginia
  • 12 Met Office, Exeter, United Kingdom
  • 13 Météo-France, Toulouse, France
  • 14 Met Office, Exeter, United Kingdom
  • 15 Atmospheric Propagation Branch, Space and Naval Warfare Systems Center Pacific, San Diego, California
  • 16 Met Office, Exeter, United Kingdom
  • 17 Dahlgren Division, Naval Surface Warfare Center, Dahlgren, Virginia
© Get Permissions
Restricted access

Abstract

The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).

Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Andy S. Kulessa, andy.kulessa@airborneresearch.com.au

Abstract

The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).

Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Andy S. Kulessa, andy.kulessa@airborneresearch.com.au
Save