• Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp. [Available online atwww.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Appendini, C. M., A. Pedrozo-Acuña, and A. Valle-Levinson, 2014: Storm surge at a western Gulf of Mexico site: Variations on Tropical Storm Arlene. Int. J. River Basin Manage., 12, 403410, doi:10.1080/15715124.2014.880709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardone, V. J., and T. Cox, 2009: Tropical cyclone wind field forcing for surge models: Critical issues and sensitivities. Nat. Hazards, 51, 2947, doi:10.1007/s11069-009-9369-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chawla, A., and Coauthors, 2013: A multigrid wave forecasting model: A new paradigm in operational wave forecasting. Wea. Forecasting, 28, 10571078, doi:10.1175/WAF-D-12-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, A. T., and V. R. Swail, 2001: A global wave hindcast over the period 1958–1997: Validation and climate assessment. J. Geophys. Res., 106, 23132329, doi:10.1029/2001JC000301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DHI, 2016a: MIKE 21, spectral wave module. DHI Scientific Documentation, 62 pp.

  • DHI, 2016b: MIKE 21 & MIKE 3 flow model FM: Hydrodynamic and transport module. DHI Scientific Documentation, 54 pp.

  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598, doi:10.1175/MWR3435.1.

  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibney, E., 2010: Which countries have had the most tropical cyclones hits? NOAA Atlantic and Meteorological Laboratory, Hurricane Research Division, accessed 4 April 2016. [Available online at www.aoml.noaa.gov/hrd/tcfaq/E25.html.]

    • Search Google Scholar
    • Export Citation
  • Glahn, B., A. Taylor, N. Kurkowski, and W. A. Shaffer, 2009: The role of the SLOSH model in National Weather Service storm surge forecasting. Natl. Wea. Dig., 33, 314. [Available online at www.nws.noaa.gov/mdl/pubs/Documents/Papers/Role_of_SLOSH_Model_August2009.pdf.]

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Impact Forecasting, 2014: Annual global climate and catastrophe report: Impact forecasting—2013. Aon Benfield, 66 pp. [Available online at http://thoughtleadership.aonbenfield.com/Documents/20140113_ab_if_annual_climate_catastrophe_report.pdf.]

    • Search Google Scholar
    • Export Citation
  • IMT, 2016: Red Nacional de Estaciones Oceanográficas y Meteorológicas. Accessed 4 April 2016. [Available online at http://imt.mx/SitioIMT/DIPC/ServiciosTecnologicos/Reneom/reneomDesarrollo.php.]

    • Search Google Scholar
    • Export Citation
  • Innocentini, V., E. Caetano, and J. T. Carvalho, 2014: A procedure for operational use of wave hindcasts to identify landfall of heavy swell. Wea. Forecasting, 29, 349365, doi:10.1175/WAF-D-13-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, doi:10.1175/2008JPO3727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jelesnianski, C., J. Chen, and W. Shaffer, 1992: SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Tech. Rep. NWS 48, 73 pp.

  • Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2016: National hurricane center tropical cyclone report: Hurricane Patricia. NOAA/NWS Rep. EP202015, 32 pp. [Available online at www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf.]

    • Search Google Scholar
    • Export Citation
  • Meza-Padilla, R., C. M. Appendini, and A. Pedrozo-Acuña, 2015: Hurricane induced waves and storm surge modeling for the Mexican coast. Ocean Dyn., 65, 11991211, doi:10.1007/s10236-015-0861-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016a: Tides and currents. Accessed 4 April 2016. [Available online at http://tidesandcurrents.noaa.gov/map/.]

  • NOAA, 2016b: Patricia 2015 best track data. Accessed 4 April 2016. [Available online at ftp://ftp.nhc.noaa.gov/atcf/archive/2015/bep202015.dat.gz.]

    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 2003: Hurricane Generated Seas. Elsevier Ocean Engineering Series, Vol. 8, Elsevier, 154 pp.

  • Pedrozo-Acuña, A., J. A. Breña-Naranjo, and R. Domínguez-Mora, 2014: The hydrological setting of the 2013 floods in Mexico. Weather, 69, 295302, doi:10.1002/wea.2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, doi:10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rego, J. L., and C. Li, 2009: On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett., 36, L07609, doi:10.1029/2008GL036953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rego, J. L., and C. Li, 2010: Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res., 115, C06020, doi:10.1029/2009JC005285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reguero, B. G., F. J. Méndez, and I. J. Losada, 2013: Variability of multivariate wave climate in Latin America and the Caribbean. Global Planet. Change, 100, 7084, doi:10.1016/j.gloplacha.2012.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosengaus-Moshinsky, M., M. Jiménez-Espinosa, and M. T. Vázquez-Conde, 2002: Atlas climatológico de ciclones tropicales en México. Centro Nacional para la Prevención de Desastres, Instituto Mexicano de Tecnología del Agua, 106 pp. [Available online at http://cambioclimatico.inecc.gob.mx/descargas/atlas_ciclones.pdf.]

  • Ruiz-Salcines, P., 2013: Campos de viento para hindcast de oleaje: Reanálisis, paramétricos y fusión. M.E. thesis, Department of Ciencias y Técnicas del Agua y del Medio Ambiente, Universidad de Cantabria, 84 pp.

  • Sørensen, O. R., H. Kofoed-Hansen, M. Rugbjerg, and L. S. Sørensen, 2004: A third-generation spectral wave model using an unstructured finite volume technique. Proc. 29th Conf. on Coastal Engineering, Lisbon, Portugal, ASCE, 894906.

  • Taylor, A. A., and B. Glahn, 2008: Probabilistic guidance for hurricane storm surge. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 7.4. [Available online at https://ams.confex.com/ams/pdfpapers/132793.pdf.]

  • UNAM, 2016: Servicio Mareográfico Nacional. Accessed 4 April 2016. [Available online at www.mareografico.unam.mx/portal.]

  • van der Westhuysen, A. J., and Coauthors, 2013: Development and validation of the nearshore wave prediction system. 11th Symp. on the Coastal Environment, Austin, TX, Amer. Meteor. Soc., 4.5. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Manuscript/Paper222877/AMS2013_Westhuysen-etal_ext_abstr_paper4-5.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 6
PDF Downloads 14 14 5

Operational Hazard Assessment of Waves and Storm Surges from Tropical Cyclones in Mexico

View More View Less
  • 1 Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
  • 2 Advisor to the National Water Commission of Mexico, Mexico City, Mexico
  • 3 Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
© Get Permissions
Restricted access

Abstract

Tropical cyclones and their associated impacts along the western and eastern Mexican coastlines have led to the recent announcement of the creation of a National Hurricane and Severe Storms Center in Mexico. While Mexico falls under the responsibility of the Regional Specialized Meteorological Center in Miami, the newly announced center aims to provide local warning advisories to local governments and emergency managers. This study developed their first operational tool, which provides rapid forecasts of hazard areas under the presence of waves and storm surges from tropical cyclones threatening Mexico. The tool is based on precomputed wave parameters and storm surges from 3,100 synthetic tropical cyclones. Maximum envelope maps for all of the events are stored in a system database that is accessed through a graphical interface. Using a search function of synthetic events, the user can select those events most analogous to the tropical cyclone in question in order to make an assessment of warning areas. The tool allows users to plot maximum envelope maps for individual events or maxima of maximum maps combining several events, either using precomputed values for the different parameters (wind, waves, and storm surge) or a normalized map. To demonstrate the capabilities of the operational tool, we present an example application based on Hurricane Patricia (2015). This tool could also be implemented by developing countries affected by tropical cyclones, which otherwise are often limited by numerical modeling capabilities, time, and budgets.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Christian M. Appendini, cappendinia@iingen.unam.mx

Abstract

Tropical cyclones and their associated impacts along the western and eastern Mexican coastlines have led to the recent announcement of the creation of a National Hurricane and Severe Storms Center in Mexico. While Mexico falls under the responsibility of the Regional Specialized Meteorological Center in Miami, the newly announced center aims to provide local warning advisories to local governments and emergency managers. This study developed their first operational tool, which provides rapid forecasts of hazard areas under the presence of waves and storm surges from tropical cyclones threatening Mexico. The tool is based on precomputed wave parameters and storm surges from 3,100 synthetic tropical cyclones. Maximum envelope maps for all of the events are stored in a system database that is accessed through a graphical interface. Using a search function of synthetic events, the user can select those events most analogous to the tropical cyclone in question in order to make an assessment of warning areas. The tool allows users to plot maximum envelope maps for individual events or maxima of maximum maps combining several events, either using precomputed values for the different parameters (wind, waves, and storm surge) or a normalized map. To demonstrate the capabilities of the operational tool, we present an example application based on Hurricane Patricia (2015). This tool could also be implemented by developing countries affected by tropical cyclones, which otherwise are often limited by numerical modeling capabilities, time, and budgets.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Christian M. Appendini, cappendinia@iingen.unam.mx
Save