Real-Time Flood Forecasting and Information System for the State of Iowa

Witold F. Krajewski IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Witold F. Krajewski in
Current site
Google Scholar
PubMed
Close
,
Daniel Ceynar IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Daniel Ceynar in
Current site
Google Scholar
PubMed
Close
,
Ibrahim Demir IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Ibrahim Demir in
Current site
Google Scholar
PubMed
Close
,
Radoslaw Goska IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Radoslaw Goska in
Current site
Google Scholar
PubMed
Close
,
Anton Kruger IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Anton Kruger in
Current site
Google Scholar
PubMed
Close
,
Carmen Langel IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Carmen Langel in
Current site
Google Scholar
PubMed
Close
,
Ricardo Mantilla IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Ricardo Mantilla in
Current site
Google Scholar
PubMed
Close
,
James Niemeier IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by James Niemeier in
Current site
Google Scholar
PubMed
Close
,
Felipe Quintero IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Felipe Quintero in
Current site
Google Scholar
PubMed
Close
,
Bong-Chul Seo IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Bong-Chul Seo in
Current site
Google Scholar
PubMed
Close
,
Scott J. Small IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Scott J. Small in
Current site
Google Scholar
PubMed
Close
,
Larry J. Weber IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Larry J. Weber in
Current site
Google Scholar
PubMed
Close
, and
Nathan C. Young IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa

Search for other papers by Nathan C. Young in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Iowa Flood Center (IFC), established following the 2008 record floods, has developed a real-time flood forecasting and information dissemination system for use by all Iowans. The system complements the operational forecasting issued by the National Weather Service, is based on sound scientific principles of flood genesis and spatial organization, and includes many technological advances. At its core is a continuous rainfall–runoff model based on landscape decomposition into hillslopes and channel links. Rainfall conversion to runoff is modeled through soil moisture accounting at hillslopes. Channel routing is based on a nonlinear representation of water velocity that considers the discharge amount as well as the upstream drainage area. Mathematically, the model represents a large system of ordinary differential equations organized to follow river network topology. The IFC also developed an efficient numerical solver suitable for high-performance computing architecture. The solver allows the IFC to update forecasts every 15 min for over 1,000 Iowa communities. The input to the system comes from a radar-rainfall algorithm, developed in-house, that maps rainfall every 5 min with high spatial resolution. The algorithm uses Level II radar reflectivity and other polarimetric data from the Weather Surveillance Radar-1988 Dual-Polarimetric (WSR-88DP) radar network. A large library of flood inundation maps and real-time river stage data from over 200 IFC “stream-stage sensors” complement the IFC information system. The system communicates all this information to the general public through a comprehensive browser-based and interactive platform. Streamflow forecasts and observations from Iowa can provide support for a similar system being developed at the National Water Center through model intercomparisons, diagnostic analyses, and product evaluations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Witold F. Krajewski, witold-krajewski@uiowa.edu

Abstract

The Iowa Flood Center (IFC), established following the 2008 record floods, has developed a real-time flood forecasting and information dissemination system for use by all Iowans. The system complements the operational forecasting issued by the National Weather Service, is based on sound scientific principles of flood genesis and spatial organization, and includes many technological advances. At its core is a continuous rainfall–runoff model based on landscape decomposition into hillslopes and channel links. Rainfall conversion to runoff is modeled through soil moisture accounting at hillslopes. Channel routing is based on a nonlinear representation of water velocity that considers the discharge amount as well as the upstream drainage area. Mathematically, the model represents a large system of ordinary differential equations organized to follow river network topology. The IFC also developed an efficient numerical solver suitable for high-performance computing architecture. The solver allows the IFC to update forecasts every 15 min for over 1,000 Iowa communities. The input to the system comes from a radar-rainfall algorithm, developed in-house, that maps rainfall every 5 min with high spatial resolution. The algorithm uses Level II radar reflectivity and other polarimetric data from the Weather Surveillance Radar-1988 Dual-Polarimetric (WSR-88DP) radar network. A large library of flood inundation maps and real-time river stage data from over 200 IFC “stream-stage sensors” complement the IFC information system. The system communicates all this information to the general public through a comprehensive browser-based and interactive platform. Streamflow forecasts and observations from Iowa can provide support for a similar system being developed at the National Water Center through model intercomparisons, diagnostic analyses, and product evaluations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Witold F. Krajewski, witold-krajewski@uiowa.edu
Save
  • Ayalew, T. B., W. F. Krajewski, and R. Mantilla, 2014a: Connecting the power-law scaling structure of peak-discharges to spatially variable rainfall and catchment physical properties. Adv. Water Resour., 71, 3243, doi:10.1016/j.advwatres.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayalew, T. B., W. F. Krajewski, R. Mantilla, and S. J. Small, 2014b: Exploring the effects of hillslope-channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge. Adv. Water Resour., 64, 920, doi:10.1016/j.advwatres.2013.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budikova, D., J. S. M. Coleman, S. A. Strope, and A. Austin, 2010: Hydroclimatology of the 2008 Midwest floods. Water Resour. Res., 46, W12524, doi:10.1029/2010WR009206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., P. V. Mandapaka, W. F. Krajewski, R. Mantilla, and A. A. Bradley, 2012: Impact of radar-rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res., 48, W10515, doi:10.1029/2012WR012138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, W. F. Krajewski, M. L. Baeck, and B.-C. Seo, 2015: NEXRAD NWS polarimetric product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, doi:10.1175/JHM-D-14-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, C. H., D. Gochis, D. R. Maidment, W. Yu, D. N. Yates, and Z.-L. Yang, 2009: Using NHD Plus as the land base for the Noah-distributed model. Trans. GIS, 13, 363377, doi:10.1111/j.1467-9671.2009.01169.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout, 2011: River network routing on the NHDPlus dataset. J. Hydrometeor., 12, 913934, doi:10.1175/2011JHM1345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demir, I., and W. F. Krajewski, 2013: Towards an adaptive flood information system: Integrated data access, analysis and visualization. Environ. Modell. Software, 50, 7784, doi:10.1016/j.envsoft.2013.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demir, I., H. Conover, Y. He, M. McEniry, W. F. Krajewski, B.-C. Seo, R. Goska, and W. Petersen, 2015: Data enabled field experiment planning, management and research using cyberinfrastucture. J. Hydrometeor., 16, 11551170, doi:10.1175/JHM-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DHI, 2014: MIKE FLOOD 1D-2D modeling user manual. 162 pp. [Available online at www.dhigroup.com.]

  • Fatichi, S., and Coauthors, 2016: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol., 537, 4560, doi:10.1016/j.jhydrol.2016.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilles, D., N. C. Young, H. Schroeder, J. Piotrowski, and Y. Chang, 2012: Inundation mapping initiatives of the Iowa Flood Center: Statewide coverage and detailed urban flooding analysis. Water, 4, 85106, doi:10.3390/w4010085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., 2004: Emergence of statistical scaling in floods on channel networks from complex runoff dynamics. Chaos Solitons Fractals, 19, 357365, doi:10.1016/S0960-0779(03)00048-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., S. L. Castro, and T. M. Over, 1996: On scaling exponents of spatial peak flows from rainfall and river network geometry. J. Hydrol., 187, 81104, doi:10.1016/S0022-1694(96)03088-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., R. Mantilla, B. M. Troutman, D. Dawdy, and W. F. Krajewski, 2010: Generalizing a nonlinear geophysical flood theory to medium-sized river networks. Geophys. Res. Lett., 37, L11402, doi:10.1029/2009GL041540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C., and Coauthors, 2007: Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 73(4), 337341.

    • Search Google Scholar
    • Export Citation
  • Iowa LiDAR Consortium, 2016: Iowa LiDAR Project—LAS and ASCII files. Iowa Department of Natural Resources Natural Resources Geographic Information System metadata, accessed 17 March 2016. [Available online at ftp://ftp.igsb.uiowa.edu/GIS_library/Projects/Iowa_LiDAR/Block_data/Lidar_LAS_ASCII.html.]

  • Kelleher, K. E., and Coauthors, 2007: Project CRAFT: A real-time delivery system for NEXRAD level II data via the internet. Bull. Amer. Meteor. Soc., 88, 10451057, doi:10.1175/BAMS-88-7-1045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., A. Kruger, S. Singh, B.-C. Seo, and J. A. Smith, 2013: Hydro-NEXRAD-2: Real-time access to customized radar-rainfall for hydrologic applications. J. Hydroinform., 15, 580590, doi:10.2166/hydro.2012.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., W. F. Krajewski, J. J. Niemeier, D. L. Ceynar, and R. Goska, 2016: Bridge-Mounted River Stage Sensors (BMRSS). IEEE Access, 4, 89488966, doi:10.1109/ACCESS.2016.2631172..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., 2008: SRH-2D version 2: Theory and user’s manual. U.S. Bureau of Reclamation, 97 pp. [Available online at www.usbr.gov/tsc/techreferences/computer%20software/models/srh2d/Manual-SRH2D-v2.0-Nov2008.pdf.]

  • Linhart, S. M., and D. A. Eash, 2010: Floods of May 30 to June 15, 2008, in the Iowa River and Cedar River basins, eastern Iowa. USGS Open-File Rep. 2010-1190, 99 pp. [Available online at http://pubs.usgs.gov/of/2010/1190/pdf/of2010-1190.pdf.]

    • Crossref
    • Export Citation
  • Liu, Y., and Coauthors, 2012: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges and emerging opportunities. Hydrol. Earth Syst. Sci., 16, 38633887, doi:10.5194/hess-16-3863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 2017: Conceptual framework for the National Flood Interoperability Experiment. J. Amer. Water Resour. Assoc., doi:10.1111/1752-1688.12474, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantilla, R., and V. K. Gupta, 2005: A GIS numerical framework to study the process basis of scaling statistics in river networks. IEEE Geosci. Remote Sens. Lett., 2, 404408, doi:10.1109/LGRS.2005.853571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantilla, R., V. K. Gupta, and O. J. Mesa, 2006: Role of coupled flow dynamics and real network structures on Hortonian scaling of peak flows. J. Hydrol., 322, 155167, doi:10.1016/j.jhydrol.2005.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantilla, R., V. K. Gupta, and B. M. Troutman, 2011: Scaling of peak flows with constant flow velocity in random self-similar networks. Nonlinear Processes Geophys., 18, 489502, doi:10.5194/npg-18-489-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, L., T. Bondelid, A. Rea, C. Johnston, R. Moore, and T. Deward, 2012: NHDPlus version 2: User guide. Horizon Systems Corp., 182 pp. [Available online at ftp://ftp.horizon-systems.com/nhdplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf.]

  • Menabde, M., and M. Sivapalan, 2001: Linking space–time variability of river runoff and rainfall fields: A dynamic approach. Adv. Water Resour., 24, 10011014, doi:10.1016/S0309-1708(01)00038-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moser, B., W. A. Gallus Jr., and R. Mantilla, 2015: An initial assessment of radar data assimilation on warm season rainfall forecasts for use in hydrologic models. Wea. Forecasting, 30, 14911520, doi:10.1175/WAF-D-14-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mutel, C., 1998: Flowing through Time: A History of the Iowa Institute of Hydraulic Research. University of Iowa, 299 pp.

  • Mutel, C., 2010: A Watershed Year: Anatomy of the Iowa Floods of 2008. University of Iowa Press, 250 pp.

    • Crossref
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Callaghan, J. F., and D. M. Mark, 1984: The extraction of drainage networks from digital elevation data. Comput. Vision Graph. Image Process., 28, 323344, doi:10.1016/S0734-189X(84)80011-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintero, F., W. F. Krajewski, R. Mantilla, S. Small, and B.-C. Seo, 2016: A spatial–dynamical framework for evaluation of satellite rainfall products for flood prediction. J. Hydrometeor., 17, 21372154, doi:10.1175/JHM-D-15-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinaldo, A., and I. Rodríguez-Iturbe, 1996: Geomorphological theory of the hydrological response. Hydrol. Processes, 10, 803829, doi:10.1002/(SICI)1099-1085(199606)10:6<803::AID-HYP373>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., and W. F. Krajewski, 2015: Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy. J. Hydrol., 531, 272283, doi:10.1016/j.jhydrol.2015.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, J. A. Smith, and M. Steiner, 2011: Radar-rainfall estimation algorithms of Hydro-NEXRAD. J. Hydroinform., 13, 277291, doi:10.2166/hydro.2010.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., L. K. Cunha, and W. F. Krajewski, 2013: Uncertainty in radar-rainfall composite and its impact on hydrologic prediction for the eastern Iowa flood of 2008. Water Resour. Res., 49, 27472764, doi:10.1002/wrcr.20244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., B. Dolan, W. F. Krajewski, S. Rutledge, and W. Petersen, 2015a: Comparison of single and dual polarization based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies Project. J. Hydrometeor., 16, 16581675, doi:10.1175/JHM-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., W. F. Krajewski, and K. V. Mishra, 2015b: Using the new dual-polarimetric capability of WSR-88D to eliminate anomalous propagation and wind turbine effects in radar-rainfall. Atmos. Res., 153, 296309, doi:10.1016/j.atmosres.2014.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, S. J., J. O. Laurent, R. Mantilla, R. Curtu, L. K. Cunha, M. Fonley, and W. F. Krajewski, 2013: An asynchronous solver for systems of ODEs linked by a directed tree structure. Adv. Water Resour., 53, 2332, doi:10.1016/j.advwatres.2012.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, G. Villarini, D. B. Wright, and W. F. Krajewski, 2013: Extreme flood response: The June 2008 flooding in Iowa. J. Hydrometeor., 14, 18101825, doi:10.1175/JHM-D-12-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, doi:10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USACE, 2011: HEC-GeoRAS: GIS Tools for Support of HEC-RAS using ArcGIS. U.S. Army Corps of Engineers, 244 pp. [Available online at www.hec.usace.army.mil/software/hec-georas/documentation/HEC-GeoRAS_43_Users_Manual.pdf.]

  • USACE, 2016: HEC-RAS: River analysis system, user’s manual. U.S. Army Corps of Engineers, 790 pp. [Available online at www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Users%20Manual.pdf.]

  • USIACWD, 1982: Guidelines for determining flood flow frequency. Bulletin 17-B of the Hydrology Subcommittee, U.S. Interagency Advisory Committee on Water Data, 183 pp. [Available online at http://water.usgs.gov/osw/bulletin17b/dl_flow.pdf.]

  • Villarini, G., J. A. Smith, M. L. Baeck, and W. F. Krajewski, 2011: Examining flood frequency distributions in the Midwest U.S. J. Amer. Water Resour. Assoc., 47, 447463, doi:10.1111/j.1752-1688.2011.00540.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., B.-C. Seo, F. Serinaldi, and W. F. Krajewski, 2014: Spatial and temporal modelling of radar rainfall uncertainties. Atmos. Res., 135–136, 91101, doi:10.1016/j.atmosres.2013.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621637, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3305 987 63
PDF Downloads 2789 654 53