Forecasting Atmospheric Rivers during CalWater 2015

Jason M. Cordeira Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, New Hampshire

Search for other papers by Jason M. Cordeira in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
,
Andrew Martin Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Andrew Martin in
Current site
Google Scholar
PubMed
Close
,
Natalie Gaggini Science and Technology Corporation, Boulder, Colorado

Search for other papers by Natalie Gaggini in
Current site
Google Scholar
PubMed
Close
,
J. Ryan Spackman Science and Technology Corporation, Boulder, Colorado

Search for other papers by J. Ryan Spackman in
Current site
Google Scholar
PubMed
Close
,
Paul J. Neiman Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
Jonathan J. Rutz NOAA/NWS/Western Region Headquarters, Salt Lake City, Utah

Search for other papers by Jonathan J. Rutz in
Current site
Google Scholar
PubMed
Close
, and
Roger Pierce NOAA/NWS/San Diego Weather Forecast Office, San Diego, California

Search for other papers by Roger Pierce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) are long and narrow corridors of enhanced vertically integrated water vapor (IWV) and IWV transport (IVT) within the warm sector of extra tropical cyclones that can produce heavy precipitation and flooding in regions of complex terrain, especially along the U.S. West Coast. Several field campaigns have investigated ARs under the CalWater program of field studies. The first field phase of CalWater during 2009–11 increased the number of observations of precipitation and aerosols, among other parameters, across California and sampled ARs in the coastal and near-coastal environment, whereas the second field phase of CalWater during 2014–15 observed the structure and intensity of ARs and aerosols in the coastal and offshore environment over the northeast Pacific. This manuscript highlights the forecasts that were prepared for the CalWater field campaign in 2015, and the development and use of an “AR portal” that was used to inform these forecasts. The AR portal contains archived and real-time deterministic and probabilistic gridded forecast tools related to ARs that emphasize water vapor concentrations and water vapor flux distributions over the eastern North Pacific, among other parameters, in a variety of formats derived from the National Centers for Environmental Prediction (NCEP) Global Forecast System and Global Ensemble Forecast System. The tools created for the CalWater 2015 field campaign provided valuable guidance for flight planning and field activity purposes, and they may prove useful in forecasting ARs and better anticipating hydrometeorological extremes along the U.S. West Coast.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Jason M. Cordeira, j_cordeira@plymouth.edu

Abstract

Atmospheric rivers (ARs) are long and narrow corridors of enhanced vertically integrated water vapor (IWV) and IWV transport (IVT) within the warm sector of extra tropical cyclones that can produce heavy precipitation and flooding in regions of complex terrain, especially along the U.S. West Coast. Several field campaigns have investigated ARs under the CalWater program of field studies. The first field phase of CalWater during 2009–11 increased the number of observations of precipitation and aerosols, among other parameters, across California and sampled ARs in the coastal and near-coastal environment, whereas the second field phase of CalWater during 2014–15 observed the structure and intensity of ARs and aerosols in the coastal and offshore environment over the northeast Pacific. This manuscript highlights the forecasts that were prepared for the CalWater field campaign in 2015, and the development and use of an “AR portal” that was used to inform these forecasts. The AR portal contains archived and real-time deterministic and probabilistic gridded forecast tools related to ARs that emphasize water vapor concentrations and water vapor flux distributions over the eastern North Pacific, among other parameters, in a variety of formats derived from the National Centers for Environmental Prediction (NCEP) Global Forecast System and Global Ensemble Forecast System. The tools created for the CalWater 2015 field campaign provided valuable guidance for flight planning and field activity purposes, and they may prove useful in forecasting ARs and better anticipating hydrometeorological extremes along the U.S. West Coast.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Jason M. Cordeira, j_cordeira@plymouth.edu
Save
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, doi:10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and D. Cayan, 2014: Drought and the California Delta—A matter of extremes. San Francisco Estuary Watershed Sci., 12(2). [Available online at http://escholarship.org/uc/item/88f1j5ht.]

    • Crossref
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. Pappenberger, and E. Zsoter, 2014: Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun., 5, 5382, doi:10.1038/ncomms6382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, doi:10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2016: The NCAR Command Language Version 6.3.0. UCAR/NCAR/CISL/TDD, doi:10.5065/D6WD3XH5.

    • Crossref
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Water Manage., 162, 8394, doi:10.1680/wama.2009.162.2.83.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. Wick, S. Gutman, M. Dettinger, D. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2013a: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871210, doi:10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. Zamora, and M. D. Dettinger, 2013b: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for Western U.S. extreme precipitation and flooding. J. Contemp. Water Resour. Res. Educ., 153, 1632, doi:10.1111/j.1936-704X.2014.03176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, doi:10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2014: The DOE ARM aerial facility. Bull. Amer. Meteor. Soc., 95, 723742, doi:10.1175/BAMS-D-13-00040.1.

  • White, A. B., F. M. Ralph, P. J. Neiman, D. J. Gottas, and S. I. Gutman, 2009: The NOAA coastal atmospheric river observatory. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10B.4. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155601.htm.]

  • White, A. B., and Coauthors, 2012: NOAA’s rapid response to the Howard A. Hanson Dam flood risk management crisis. Bull. Amer. Meteor. Soc., 93, 189207, doi:10.1175/BAMS-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, doi:10.1175/JTECH-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, doi:10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 999 396 21
PDF Downloads 486 132 11