CERES S’COOL Project Update: The Evolution and Value of a Long-Running Education Project with a Foundation in NASA Earth Science Missions

Lin H. Chambers Science Directorate, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Lin H. Chambers in
Current site
Google Scholar
PubMed
Close
,
Megan A. McKeown Texas A&M, College Station, Texas

Search for other papers by Megan A. McKeown in
Current site
Google Scholar
PubMed
Close
,
Sarah A. McCrea Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Sarah A. McCrea in
Current site
Google Scholar
PubMed
Close
,
Ann M. Martin Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Ann M. Martin in
Current site
Google Scholar
PubMed
Close
,
Tina M. Rogerson Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Tina M. Rogerson in
Current site
Google Scholar
PubMed
Close
, and
Kristopher M. Bedka Science Directorate, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kristopher M. Bedka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In January 1997, the Students’ Cloud Observations Online (S’COOL; http://scool.larc.nasa.gov) project began with NASA scientists visiting rural Gloucester, Virginia, to observe clouds with middle school students. In the nearly 20 years since, this educational outreach component of NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission has collected ∼144,500 observations from every continent and ocean basin around the world. Thousands of students, educators, and cloud-watching enthusiasts have participated in S’COOL.

More than half of S’COOL observation reports correspond to one or more CERES overpasses. A thorough analysis of collocated S’COOL and satellite data were conducted during summer 2015. Results showed that the S’COOL community reports high-quality observations providing useful insights on the strengths and shortcomings of passive cloud remote sensing from space. This reconfirms the utility of S’COOL observations to the scientific community and enables deeper insight into challenges associated with validation of space-based cloud property retrievals.

To maintain long-term participation, S’COOL has added components that involve participants directly with science data analysis, strengthening ties to CERES research and deepening engagement. Whenever possible, the S’COOL team sends corresponding subsets of CERES data for the participant to compare to their report. Observations can now be matched to images and cloud retrievals from multiple satellites and instruments. Recent connections to geostationary data make cloud observations at almost any time of day over nonpolar regions useful for validation. This attention to inviting participants into an authentic science experience is key to the long-term success of the project.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Lin H. Chambers, lin.h.chambers@nasa.gov

Abstract

In January 1997, the Students’ Cloud Observations Online (S’COOL; http://scool.larc.nasa.gov) project began with NASA scientists visiting rural Gloucester, Virginia, to observe clouds with middle school students. In the nearly 20 years since, this educational outreach component of NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission has collected ∼144,500 observations from every continent and ocean basin around the world. Thousands of students, educators, and cloud-watching enthusiasts have participated in S’COOL.

More than half of S’COOL observation reports correspond to one or more CERES overpasses. A thorough analysis of collocated S’COOL and satellite data were conducted during summer 2015. Results showed that the S’COOL community reports high-quality observations providing useful insights on the strengths and shortcomings of passive cloud remote sensing from space. This reconfirms the utility of S’COOL observations to the scientific community and enables deeper insight into challenges associated with validation of space-based cloud property retrievals.

To maintain long-term participation, S’COOL has added components that involve participants directly with science data analysis, strengthening ties to CERES research and deepening engagement. Whenever possible, the S’COOL team sends corresponding subsets of CERES data for the participant to compare to their report. Observations can now be matched to images and cloud retrievals from multiple satellites and instruments. Recent connections to geostationary data make cloud observations at almost any time of day over nonpolar regions useful for validation. This attention to inviting participants into an authentic science experience is key to the long-term success of the project.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Lin H. Chambers, lin.h.chambers@nasa.gov
Save
  • Bach Center for Evaluation and Research, 2006: Evaluation of the CERES S’COOL Project. Internal Evaluation Rep., 31 pp. [Available online at http://scool.larc.nasa.gov/pdf/scoolevaluation-1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Chambers, L. H., D. F. Young, P. K. Costulis, P. T. Detweiler, D. B. Stoddard, R. Sepulveda, J. D. Watkins, and A. Falcone, 2003: The CERES S’COOL Project. Bull. Amer. Meteor. Soc., 84, 759765, doi:10.1175/BAMS-84-6-759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, L. H., P. K. Costulis, and D. F. Young, 2004: Students as ground observers for satellite cloud retrieval validation. 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., 6.2. [Available online at https://ams.confex.com/ams/13SATMET/techprogram/paper_78967.htm.]

    • Search Google Scholar
    • Export Citation
  • Kennedy, T. J., and S. Henderson, 2003: The GLOBE Program: Bringing together students, teachers and scientists to increase scientific understanding of the Earth through research. Child. Youth Environ., 13, 217227.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., P. W. Stackhouse Jr., S. K. Gupta, A. C. Wilber, P. Sawaengphokhai, and G. R. McGarragh, 2014: The Fast Longwave and Shortwave Flux (FLASHFlux) data product: Single scanner footprint fluxes. J. Appl. Meteor. Climatol., 53, 10591079, doi:10.1175/JAMC-D-13-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., and J. Teixeira, 2015: Dispelling clouds of uncertainty. Eos, 96, doi:10.1029/2015EO031303.

  • Lintott, C. J., and Coauthors, 2008: Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. Roy. Astron. Soc., 389, 11791189, doi:10.1111/j.1365-2966.2008.13689.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, doi:10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. M., and S. McCrea, 2015: S’COOL user experience evaluation. Internal Evaluation Rep., 14 pp. [Available online at http://scool.larc.nasa.gov/pdf/2015_SCOOL_User_Experience_Evaluation_FINAL_1_16.pdf.]

    • Search Google Scholar
    • Export Citation
  • Minnis, P., 1989: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data. J. Geophys. Res., 94, 23032320, doi:10.1029/JD094iD02p02303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen, 2008: Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiffman, S., 2004: Cloud detection from satellite imagery: A comparison of expert-generated and automatically-generated decision trees. NASA Tech Doc., 5 pp. [Available online at https://ti.arc.nasa.gov/m/pub-archive/917h/0917%20(Shiffman).pdf.]

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Jr., P. Minnis, H. Finney, R. Palikonda, and M. M. Khaiyer, 2008: An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains site. Geophys. Res. Lett., 35, L13820, doi:10.1029/2008GL034275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2007: View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112, D06203, doi:10.1029/2005JD006912.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. W., and Coauthors, 2013: Galaxy Zoo 2: Detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. Roy. Astron. Soc., 435, 28352860, doi:10.1093/mnras/stt1458.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 122 15
PDF Downloads 285 81 7