Stochastic Parameterization: Toward a New View of Weather and Climate Models

Judith Berner National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Judith Berner in
Current site
Google Scholar
PubMed
Close
,
Ulrich Achatz Institut für Atmosphäre und Umwelt, Goethe-Universität, Frankfurt am Main, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
,
Lauriane Batté CNRM-GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Lauriane Batté in
Current site
Google Scholar
PubMed
Close
,
Lisa Bengtsson Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by Lisa Bengtsson in
Current site
Google Scholar
PubMed
Close
,
Alvaro de la Cámara National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Alvaro de la Cámara in
Current site
Google Scholar
PubMed
Close
,
Hannah M. Christensen Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Hannah M. Christensen in
Current site
Google Scholar
PubMed
Close
,
Matteo Colangeli Gran Sasso Science Institute, L’Aquila, Italy

Search for other papers by Matteo Colangeli in
Current site
Google Scholar
PubMed
Close
,
Danielle R. B. Coleman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Danielle R. B. Coleman in
Current site
Google Scholar
PubMed
Close
,
Daan Crommelin Centrum Wiskunde en Informatica, and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands

Search for other papers by Daan Crommelin in
Current site
Google Scholar
PubMed
Close
,
Stamen I. Dolaptchiev Institut für Atmosphäre und Umwelt, Goethe-Universität, Frankfurt am Main, Germany

Search for other papers by Stamen I. Dolaptchiev in
Current site
Google Scholar
PubMed
Close
,
Christian L. E. Franzke Meteorological Institute, and Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany

Search for other papers by Christian L. E. Franzke in
Current site
Google Scholar
PubMed
Close
,
Petra Friederichs Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Petra Friederichs in
Current site
Google Scholar
PubMed
Close
,
Peter Imkeller Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

Search for other papers by Peter Imkeller in
Current site
Google Scholar
PubMed
Close
,
Heikki Järvinen Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Heikki Järvinen in
Current site
Google Scholar
PubMed
Close
,
Stephan Juricke Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Stephan Juricke in
Current site
Google Scholar
PubMed
Close
,
Vassili Kitsios Oceans and Atmosphere Flagship, CSIRO, Aspendale, Victoria, Australia

Search for other papers by Vassili Kitsios in
Current site
Google Scholar
PubMed
Close
,
François Lott Laboratoire de Météorologie Dynamique (CNRS/IPSL), Ecole Normale Supérieure, Paris, France

Search for other papers by François Lott in
Current site
Google Scholar
PubMed
Close
,
Valerio Lucarini Meteorological Institute, and Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany, and Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom

Search for other papers by Valerio Lucarini in
Current site
Google Scholar
PubMed
Close
,
Salil Mahajan Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Salil Mahajan in
Current site
Google Scholar
PubMed
Close
,
Timothy N. Palmer Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Timothy N. Palmer in
Current site
Google Scholar
PubMed
Close
,
Cécile Penland Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Cécile Penland in
Current site
Google Scholar
PubMed
Close
,
Mirjana Sakradzija Max Planck Institute for Meteorology, and Hans-Ertel-Centre for Weather Research, Deutscher Wetterdienst, Hamburg, Germany

Search for other papers by Mirjana Sakradzija in
Current site
Google Scholar
PubMed
Close
,
Jin-Song von Storch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Jin-Song von Storch in
Current site
Google Scholar
PubMed
Close
,
Antje Weisheimer National Centre for Atmospheric Science, and Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, and ECMWF, Reading, United Kingdom

Search for other papers by Antje Weisheimer in
Current site
Google Scholar
PubMed
Close
,
Michael Weniger Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Michael Weniger in
Current site
Google Scholar
PubMed
Close
,
Paul D. Williams Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Paul D. Williams in
Current site
Google Scholar
PubMed
Close
, and
Jun-Ichi Yano GAME-CNRM, CNRS, Météo-France, Toulouse, France

Search for other papers by Jun-Ichi Yano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Judith Berner,berner@ucar.edu

Abstract

The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Judith Berner,berner@ucar.edu
Save
  • Achatz, U., U. Löbl, S. I. Dolaptchiev, and A. Gritsun, 2013: Fluctuation–dissipation supplemented by nonlinearity: A climate-dependent subgrid-scale parameterization in low-order climate models. J. Atmos. Sci., 70, 18331846, doi:10.1175/JAS-D-12-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, L., 2001: Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models. Stochastic Climate Models, P. Imkeller and J.-S.von Storch, Eds., Progress in Probability, Vol. 49, Springer, 141–157, doi:10.1007/978-3-0348-8287-3_5.

    • Crossref
    • Export Citation
  • Batté, L. and F. J. Doblas-Reyes, 2015: Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: Impact of SPPT on seasonal forecast quality. Climate Dyn., 45, 34193439, doi:10.1007/s00382-015-2548-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, doi:10.1038/nature14956.

  • Beena, B. S., and J.-S. von Storch, 2009: Effects of fluctuating daily surface fluxes on the time-mean oceanic circulation. Climate Dyn., 33, 118, doi:10.1007/s00382-009-0575-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and H. Körnich, 2016: Impact of a stochastic parameterization of cumulus convection, using cellular automata, in a mesoscale ensemble prediction system. Quart. J. Roy. Meteor. Soc., 142, 11501159, doi:10.1002/qj.2720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, doi:10.1002/qj.2108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117, doi:10.1175/JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., F. J. Doblas-Reyes, T. N. Palmer, G. Shutts, and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. Roy. Soc. London, 366A, 25612579, doi:10.1098/rsta.2008.0033.

    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., T. Jung, and T. N. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, doi:10.1175/JCLI-D-11-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., K. R. Smith, S.-Y. Ha, J. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev., 143, 12951320, doi:10.1175/MWR-D-14-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and P. D. Williams, 2008: Sudden stratospheric warmings as noise-induced transition. J. Atmos. Sci., 65, 33373343, doi:10.1175/2008JAS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776, doi:10.1002/qj.394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chekroun, M., H. Liu, and S. Wang, 2015a: Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I. Springer, 127 pp., doi:10.1007/978-3-319-12496-4.

    • Crossref
    • Export Citation
  • Chekroun, M., H. Liu, and S. Wang, 2015b: Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II. Springer, 129 pp., doi:10.1007/978-3-319-12520-6.

    • Crossref
    • Export Citation
  • Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015a: Simulating weather regimes: Impact of stochastic and perturbed parameter schemes in a simple atmospheric model. Climate Dyn., 44, 21952214, doi:10.1007/s00382-014-2239-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015b: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 25252544, doi:10.1175/JAS-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., J. Berner, D. Coleman and T. N. Palmer, 2017: Stochastic parameterization and the El Niño–Southern Oscillation. J. Climate, 30, 1738, doi:10.1175/JCLI-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colangeli, M., and V. Lucarini, 2014: Elements of a unified framework for response formulae. J. Stat. Mech., 2014, P01002, doi:10.1088/1742-5468/2014/01/P01002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colangeli, M., C. Maes, and B. Wynants, 2011: A meaningful expansion around detailed balance. J. Phys., 44A, 095001, doi:10.1088/1751-8113/44/9/095001.

    • Search Google Scholar
    • Export Citation
  • Colangeli, M., L. Rondoni, and A. Vulpiani, 2012: Fluctuation-dissipation relation for chaotic non-Hamiltonian systems. J. Stat. Mech., 2012, L04002, doi:10.1088/1742-5468/2012/04/L04002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colangeli, M., L. Rondoni, and A. Verderosa, 2014: Focus on some nonequilibrium issues. Chaos Solitons Fractals, 64, 215, doi:10.1016/j.chaos.2014.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004, doi:10.1175/JAS3709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., and T. N. Palmer, 2015: Simulating weather regimes: Impact of model resolution and stochastic parameterization. Climate Dyn., 44, 21772193, doi:10.1007/s00382-014-2238-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debussche, A., N. Glatt-Holtz, R. Temam, and M. Ziane, 2012: Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity, 25, 2093, doi:10.1088/0951-7715/25/7/2093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deker, U., and F. Haake, 1975: Fluctuation-dissipation theorems for classical processes. Phys. Rev., 11A, 20432056, doi:10.1103/PhysRevA.11.2043.

    • Crossref
    • Search Google Scholar
    • Export Citation