Will Global Warming Make Hurricane Forecasting More Difficult?

Kerry Emanuel Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry Emanuel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hurricane track forecasts have improved steadily over the past few decades, yet forecasting hurricane intensity remains challenging. Of special concern are the rare instances of tropical cyclones that intensify rapidly just before landfall, catching forecasters and populations off guard, thereby risking large casualties. Here, we review two historical examples of such events and use scaling arguments and models to show that rapid intensification just before landfall is likely to become increasingly frequent and severe as the globe warms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Kerry Emanuel, emanuel@mit.edu

Abstract

Hurricane track forecasts have improved steadily over the past few decades, yet forecasting hurricane intensity remains challenging. Of special concern are the rare instances of tropical cyclones that intensify rapidly just before landfall, catching forecasters and populations off guard, thereby risking large casualties. Here, we review two historical examples of such events and use scaling arguments and models to show that rapid intensification just before landfall is likely to become increasingly frequent and severe as the globe warms.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR E-MAIL: Kerry Emanuel, emanuel@mit.edu
Save
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, doi:10.1002/qj.2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arguez, A., and J. B. Elsner, 2001: Trends in U.S. tropical cyclone mortality during the past century. Fla. Geogr., 32, 2837.

  • Bender, M. A., I. Ginis, and Y. Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23 24523 263, doi:10.1029/93JD02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., C. W. Landsea, and E. J. Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones of from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 47 pp. [Available online at www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.]

  • Brinkley, D. G., 2006: The Great Deluge. William Morrow, 736 pp.

  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Colbert, A. J., B. J. Soden, G. A. Vecchi, and B. P. Kirtman, 2013: The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Climate, 26, 40884095, doi:10.1175/JCLI-D-12-00342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CRED, 2016: EM-DAT: The International Disaster Database. Centre for Research on the Epidemiology of Disasters, accessed 5 October 2016. [Available online at www.emdat.be/.]

  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, doi:10.1038/326483a0.

  • Emanuel, K., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, doi:10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 81658170, doi:10.1175/JCLI-D-15-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowch, R., and K. Emanuel, 2015: Are special processes at work in the rapid intensification of tropical cyclones? Mon. Wea. Rev., 143, 878882, doi:10.1175/MWR-D-14-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2016: Best track data(HURDAT2). Accessed 7 March 2016. [Available online at www.nhc.noaa.gov/data/#hurdat.]

  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, doi:10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, doi:10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravela, S., K. Emanuel, and D. McLaughlin, 2007: Data assimilation by field alignment. Physica D, 230, 127145, doi:10.1016/j.physd.2006.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and C. L. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, doi:10.1175/2009BAMS2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2007: Automated Tropical Cyclone Forecast (ATCF) database. Naval Research Laboratory, accessed 4 May 2016. [Available at www.nrlmry.navy.mil/atcf_web/docs/database/new/database.html.]

  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, doi:10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15022 5488 186
PDF Downloads 6405 1974 71